
Answering Top-k Exemplar Trajectory Queries

Sheng Wang∗ Zhifeng Bao∗ J. Shane Culpepper∗ Timos Sellis† Mark Sanderson∗ Xiaolin Qin‡
∗RMIT University, †Swinburne University of Technology, ‡Nanjing University of Aeronautics and Astronautics

∗firstname.surname@rmit.edu.au †tsellis@swin.edu.au ‡qinxcs@nuaa.edu.cn

Abstract—We study a new type of spatial-textual trajectory
search: the Exemplar Trajectory Query (ETQ), which specifies
one or more places to visit, and descriptions of activities at
each place. Our goal is to efficiently find the top-k trajectories
by computing spatial and textual similarity at each point. The
computational cost for pointwise matching is significantly higher
than previous approaches. Therefore, we introduce an incremen-
tal pruning baseline and explore how to adaptively tune our
approach, introducing a gap-based optimization and a novel two-
level threshold algorithm to improve efficiency. Our proposed
methods support order-sensitive ETQ with a minor extension.
Experiments on two datasets verify the efficiency and scalability
of our proposed solution.

I. INTRODUCTION

Large amounts of trajectory data, containing geographic in-
formation of moving objects, is being recorded with the prolif-
eration of GPS-enabled devices. People commonly “check-in”
with smart phones to record personal historical movement, see
Figure 1. Composed of locations, timestamps, and keywords,
the check-ins form a unique recorded trajectory, which can be
later mined for applications such as trip recommendation [9].
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Fig. 1. Check-in points hold 1) a location, 2) a timestamp, and 3) keywords.

Example 1: Imagine that Jack is planning a trip to Los
Angeles. He initially identifies two places to stay and visit:
the hotel he booked and the beach. He specifies things to do
around each place, for example “coffee” and “swimming” (red
points in Figure 1) respectively. Query: Find past trajectories
most related to Jack given his suggested locations and interests.

Commercial trip recommendation systems such as Google
Trips1 and Triphobo2 are built for tourists to plan and share
trips online. However, the input to such systems is usually a
simple query such as “Los Angeles”. If a user (such as Jack)
has a more nuanced preference of locations and keywords, they
cannot easily be expressed using existing systems.

An Exemplar Textual Query (ETQ) is defined as: Given a
database of trajectories, and a query Q that includes a tuple of
one or more locations and associated keywords (with attached

1https://www.google.com/trips/
2https://www.triphobo.com/

T1

T2

T3

T4

T5

T6

q1 q2 q3

T1
q1 q2 q3

(a)

(b)

(c)

1. (Coffee, 0.35); (Restaurant 0.4)
2. (Seafood, 0.7); (Noodle, 0.1)
3. (Seafood, 0.2); (Coffee, 0.4)
4. (Coffee, 0.2); (Swimming, 0.3)
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Fig. 2. (a): An example of ETQ (6 trajectories and the exemplar query Q);
(b): Keywords with a weight of T1 in each point; (c) Point-wise matching
between Q and T1

weights), retrieve the top-k trajectories ranked by spatial-
textual similarity. Consider the example shown in Figure 2,
where the query consists of three points, each with an attached
keyword, 2(c). Six potential result trajectories are listed, 2(a).
Each trajectory also has a set of keywords with associated
weights (only the keywords of T1 are shown 2(b)). A Top-1
ETQ finds the most related trajectory from the six trajectories.

At first glance, our problem can be scoped as a spatial-
textual trajectory search [5, 7, 14, 19, 20]. However, our input
query differs from past work. Shang et al. [14] modeled queries
as distinct sets of locations and keywords. Consequently, re-
trieved trajectories were close to target locations, but contained
no common keyword with each query point since the keywords
were not necessarily constrained to any of the locations. In
contrast, Zheng et al. [20] used Boolean queries, which only
retrieved exact matches. Neither of these approaches satisfy
the query we wish to ask. For example, in the work of Shang
et al. [14], the trajectory in Figure 1 which contains “coffee”
in the 4th point that is faraway from the query point may be
recognized as a quite similar trajectory as the 2nd point is
spatially close to the query point, and for Zheng et al. [20], a
trajectory without the keyword “coffee” would not be a result
even if all of the other keywords are matched.

We extend existing work on pointwise similarity [3, 11,
12, 15, 16, 17], so that every query point contains the best
match with the highest score in the whole trajectory, and the
aggregation of the scores for all query points, which reflects
the closeness between trajectory and query, best represents the
overall similarity. For instance, recall in Figure 2(c) where each
point in Q finds the best-matching point in T1, so the second
point of T1 has the highest similarity with q1.

Efficient computation of such top-k trajectory queries is our
key challenge. Trajectory pruning is more difficult when text
descriptions are constrained to point locations. If traditional
approaches are used to solve this problem, the pointwise
similarity computation has a quadratic cost, since every point
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TABLE I. COMPARISON BETWEEN RELATED WORK ON SPATIAL-TEXTUAL TRAJECTORY SEARCH, WHERE EU STANDS FOR ”EUCLIDEAN”, JAC STANDS

FOR ”JACCARD” AND ED STANDS FOR ”EDIT DISTANCE”.

Work
Input

Search Semantic
Search Metric

Output
Query Data Model Spatial Textual

ETQ Points with keywords Trajectory Disjunctive Eu TF·IDF Top-k Trajectories

Zheng et al. [20] Points with keywords Trajectory Conjunctive Eu N/A Top-k Trajectory

Shang et al. [14] Points, Keywords Spatial-only Trajectory and Keywords Disjunctive Eu Jac Top-k Trajectories

Cong et al. [5] Point, Keywords Trajectory Conjunctive Eu N/A Top-k Sub-Trajectories

Zheng et al. [19] Keywords Trajectory Conjunctive Eu ED Top-k (Sub-)Trajectories

Han et al. [7] Region, Keywords Trajectory Conjunctive N/A N/A Trajectories

must be compared against all points in every other trajectory.
Combining the two dimensions into a coherent definition of
similarity while still allowing efficient pruning based on both
spatial proximity and keyword similarity is the main problem
addressed in this paper.

Contribution. In this paper, we define a top-k ETQ search,
and introduce a fine-grained spatial-textual similarity function
that starts with a point-level to trajectory-level match. We pro-
pose an incremental lookup framework to improve efficiency
which works as follows: 1) Expand the search range λ to
perform a top-λ spatial keyword query, and find the λ closest
points and their affiliated trajectories, forming a candidate top-
k set; 2) Expansion is halted once the upper bound for any
unseen trajectory similarity is not greater than the lower bound
of the currently processed trajectories in the candidate set, thus
pruning away trajectories which cannot be in the top-k; 3) Sort
the candidate set to find the top-k. The pruning methods in
Step 2 form the baseline. Two additional directions to improve
the efficiency are explored using this framework. Briefly, our
contributions can be summarized as follows:

• We propose an adaptive gap-based optimization to ter-
minate the search range expansion as early as possible.
(Section 5)

• By observing that the same data points may be repeatedly
probed until the candidate set is finalized during the
incremental expansion, we propose a two-level threshold
algorithm (TA) to avoid repetition. (Section 6)

• We show how to extend our framework to support order-
sensitive exemplar search. (Section 7)

• We have performed extensive experiments using two
datasets to verify the efficiency and scalability of our
approach. (Section 8)

II. RELATED WORK

In this section we review related work on spatial-textual
trajectory search, spatial-only trajectory search, and spatial
keyword search.

A. Spatial-Textual Trajectory Search
Several recent papers have explored the problem of spatial-

textual trajectory search in a variety of different scenarios.
Table I reports the differences and similarities between our
work and prior work in terms of query and data models, search
semantics, metrics and result output. From Table I, we can
see that the only work which supports the same input and
output as ETQ is the work of Zheng et al. [20]. However,
their work only supports conjunctive matching, so all of the
results must contain every query keyword, which simplifies
the more general keyword search problem. Shang et al. [14]
present a same search semantic, but keywords are attached
to the whole trajectory, and not individual locations in the
query or the data. Other work [5, 7, 19] is quite different than
our work from the perspective of input and search semantics.
Briefly, Cong et al. [5] proposed a sub-trajectory search method

to find the minimum travel distance for a single query point
using a Boolean keyword match. Zheng et al. [19] proposed
an approximate query solution over trajectories with a set of
keywords, and Han et al. [7] focused on range query search
over trajectories. Our work focuses on ranked, disjunctive,
pointwise search semantics which is distinct from all prior
related work.

B. Spatial-only Trajectory Search by Points
As described in Section 1, there has been various work

targeting search on spatial-only trajectory data using a set of
points as the input query [3, 11, 12, 15, 16]. Chen et al.
[3] initially formulated the problem of querying over a set of
points with spatial-only trajectories. They proposed an incre-
mental expansion method which used an R-tree for pruning,
and referred to the search as Incremental K Nearest Neighbors
(IKNN). Tang et al. [15] proposed a qualifier expectation
measure that ranks partial-matching candidate trajectories to
accelerate query processing for non-uniform trajectory distri-
butions and/or outlier query locations. Qi et al. [11, 12] went
on to combine IKNN and the qualifier expectation model to
improve the efficiency, and presented a range-based method to
improve the efficiency even further. By extending a pointwise
similarity model, Yan et al. [16] assigned an importance value
to each point based on a time stamp to distinguish between
points where a user spends more time within a trajectory.

C. Top-k Spatial Keyword Search
A top-k Spatial Keyword (TkSK) search retrieves the

k objects with the highest ranking scores, measured as a
combination of distance to the query location, and relevance
of the text description to the query keywords. The solution
can be broadly divided as two categories: spatial-first [4, 8]
and text-first [13, 17]. A spatial-first strategy augments the
nodes of a spatial data structure like an R-tree with a pseudo-
document vector to store the textual information in each node.
For example, the IR-tree [4, 8] was proposed to combine an
R-tree with an inverted index. Spatial relevance is calculated
from the MBR and an upper bound of textual relevance is
derived from the pseudo-document for pruning. However, a
spatial-first strategy will scan a few leaf nodes which contain
many unrelated points that do not share any common keywords
at all, so an IR-tree can be inefficient, especially when k is
large [10]. For text-first methods such as [13], the search space
is primarily organized by keywords, so only the points which
share common keywords with the query will be checked, and
the processing time does not increase as in the IR-tree, even
though k is large. Recently, Zhang et al. [18] proposed an
novel solution for top-k spatial keyword query which recasts
the problem to the well-known top-k aggregation problem.

III. PROBLEM DEFINITION

In this section, we will formally define the problem of
exemplar trajectory query. Table II summarizes the notation
used throughout this paper.

600600600586586586586586586598598598
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TABLE II. SUMMARY OF NOTATION
Notation Definition

T Trajectory

Q Exemplar query

Ŝ (Q, T ) Trajectory similarity between Q and T (Definition 6)

pi, pj Points pi and pj

ŜT (pi, pj) Textual similarity between pi and pj

ŜS(pi, pj) Spatial similarity between pi and pj

Ŝ(pi, pj) Spatial-textual similarity between pi and pj

unseen UB The upper bound across all unseen trajectories’ similarity

LBseen(Q, T )
A function returning the lower bound

of the trajectory similarity between Q and T

UBseen(Q, T )
A function returning the upper bound

of trajectory similarity between Q and T

Ŝc (qi)
The minimum similarity of candidate points

for qi in the c-th round of expansion

Rc (qi) The ranked list for qi in the c-th round of expansion

Ctra The set of all checked trajectories

BG (c)
The gap between the lower and upper

bound in the c-th round of expansion (Definition 8)

Spac (qi) The similarity sparsity of qi in c-th expansion

itmax The number of iterations to scan all points in candidate points

Definition 1: (Point) A point p = (loc, act) is a pair
consisting of a location loc and a set of associated keywords
act = (t1, t2, . . . , ti) describing the loc and/or the activities at
loc.

Definition 2: (Trajectory) A trajectory T of length n is in
the form of p1, p2, . . . , pn, where each pi is a point.

Definition 3: (Query) A query Q (of size m) is a set of
points in the form of {q1,q2,. . . ,qm}.

The similarity between T and Q is computed between
points which share at least one common keyword. While
a query point may have multiple textwise matching points,
recalling the related work on spatial-only trajectory search,
similarity is computed from one point to another point. There-
fore, we only choose the point with the maximum spatial-
textual similarity, and add all point-to-point similarities to get
the spatial-textual similarity between query and trajectories.

Definition 4: (Point-to-Point Similarity) We define the
similarity between two points pi, pj as:

Ŝ (pi, pj)=

{
0, pi.act ∩ pj .act=∅

α · ŜS + (1− α) · ŜT , otherwise
(1)

where ŜT (pi, pj) is the text similarity, ŜS (pi, pj) is the spatial
similarity between two points, and α ∈ (0, 1) is used to adjust
the relative importance of the spatial and textual similarity.

We use the sum of the textual relevance of each term [1, 18]
to measure the textual similarity, and the Euclidean distance to
measure the spatial similarity. The choice of similarity metric
is orthogonal to our query processing method (in Sec. IV).

ŜT (pi, pj) =
∑

t∈pi.act∩pj .act

γ(t) (2)

ŜS (pi, pj) =
Dmax − Euclidean (pi, pj)

Dmax
(3)

Here, γ(t) is the weight of keyword t in pj calculated by a
simple TF·IDF model [1]. The variable Dmax is the maximum
distance between any two unique points in geographical space,
and used to normalize the spatial scoring between 0 and 1.

Definition 5: (Point-to-Trajectory Similarity) The simi-
larity between a query point qi and a trajectory T is defined
as:

Ŝ (qi, T ) = max
pj∈T

{
Ŝ (qi, pj)

}
(4)

TABLE III. SIMILARITY TABLE BETWEEN Q AND ALL TRAJECTORIES

T1 TO T6 SHOWN IN FIGURE 2 BASED ON DEFINITIONS 1-6 WHERE

α = 0.5. HERE, “ID” SHOWS THE POINT POSITION IN TRAJECTORY.

q1 q2 q3 Q

ID ŜS ŜT ID ŜS ŜT ID ŜS ŜT Ŝ

T1 2 0.7 0.7 3 0.4 0.5 4 0.3 0.5 0.516
T2 2 0.6 0.5 4 0.5 0.5 0.35
T3 1 0.9 0.5 0.233
T4 1 0.2 0.3 2 0.7 0.5 0.283
T5 2 0.7 0.3 3 0.5 0.3 0.3
T6 3 0.4 0.2 4 0.2 0.2 0.166

Definition 6: (Pointwise Similarity) The pointwise sim-
ilarity between T and Q is a sum of the point-trajectory
similarities between T and each point in Q, normalized by
|Q|:

Ŝ (Q,T ) =
∑
qi∈Q

Ŝ (qi, T ) /|Q|. (5)

In trajectory T , |Q| points are chosen to compute the final
similarity between T and Q. These |Q| points form a sub-
trajectory which can be taken as a representative result, and
denoted as TQ.

Definition 7: (Top-k Exemplar Trajectory Query) Given
a trajectory database D = {T1, . . . , T|D|} and query Q, a
trajectory search retrieves a set R ⊆ D with k trajectories
such that: ∀r ∈ R, ∀r′ ∈ D −R, Ŝ(Q, r) > Ŝ(Q, r

′
).

Example 2: Figure 2 is an illustrative example of a query
and trajectories, showing: (a) The spatial shapes of the query
and trajectories; (b) The keywords attached to each point in T1;
and (c) The best match for each query point with T1 based on
our pointwise similarity model. Further, Table III presents an
example of the similarity computations between a query Q and
the six trajectories (shown in Figure 2). For each query point,
we list the maximum similarity for every trajectory, and a blank
space means that they share no common keywords. We can
compute the similarity between Q and T1 using Ŝ (Q,T1) =
0.7+0.7

2 + 0.4+0.5
2 + 0.3+0.5

2

3 = 0.516 and the similarities of other
trajectories are listed in the right column of the table. As we
can see, T1, T2, T5 are the top-3 results.

IV. INCREMENTAL QUERY PROCESSING

The similarity (Definition 6) is an aggregation of spatial-
textual similarities from all query points, and is inspired by
spatial-only trajectory search [3, 11, 12, 15]. The threshold
algorithm of Fagin et al. [6] can be used directly as a filtering
framework for ranked lists. While in principle a similar idea
can be modified to suit our purposes, using the algorithm of
Fagin et al. directly does not work since the top-k list for every
point in the query is not known a priori. However another
solution, the incremental k nearest neighbor search algorithm
IKNN [3, 11, 12] can be used to fill partially ranked lists with
exactly λ nearest points for every query point. The ranked lists
can be expanded by increasing λ until all unseen trajectories
can not beat the current results. In this section, we show how
to extend IKNN from spatial-only to spatial-textual search, and
propose several bounds to terminate the expansion, which form
a baseline processing framework for ETQ.

A. Incremental Lookup Algorithm
The Incremental Lookup Algorithm (ILA) can be divided

into three steps, as shown in Algorithm 1.
Step 1: For each query point qi ∈ Q, we first conduct a top-
λ Spatial Keyword Query (TkSK) to find λ points with the

601601601587587587587587587599599599
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Algorithm 1: Incremental Lookup Algorithm

Input: Trajectory database D, query Q, MT
Output: Top-k result set RS

1 λ← k; c← 0; RS ← ∅;
2 while λ < λmax do
3 foreach qi ∈ Q do
4 if λ < λmax

i then
5 Rc (qi)← TkSK (qi, λ,D.P );
6 else
7 Rc (qi)← Rc−1 (qi);

8 Ctra ←
|Q|⋃
i=1

Covered (Rc (qi),MT );

9 if |Ctra| > k then
10 unseen UB = UBunseen(D − Ctra) (Equation 8);
11 seen LB [] =

⋃
T∈Ctra

LBseen (T ) (Equation 9);

12 Sort seen LB[] in decreasing order;
13 if seen LB[k] > unseen UB then
14 seen UB [] =

⋃
T∈Ctra

UBseen (T ) ( Equation

10);
15 Sort Ctra by seen UB[] in decreasing order;
16 foreach Ti ∈ Ctra do
17 Compute Ŝ(Q,Ti);
18 if |RS| < k then
19 Insert Ti in RS;
20 else
21 if Ŝ(Q,Ti) > RS.min then
22 Replace RS.min with Ti;
23 if RS.min > seen UB[i+ 1] then
24 break;
25 λ← λ+Δ; c← c+ 1;
26 return RS;

highest pointwise similarity (Equation 1) from D.P which are
all points in D. Note that we have introduced several solutions
for TkSK in Section II, and settle on the state-of-the-art method
RCA [18] based on our experiments, which uses the index
structure described in Section VI. Initially, λ is set to k. As a
result, we have |Q| ranked lists Rc (qi) (Lines 3-7). Then for
each point in Rc (qi), we use MT which is a point-to-trajectory
mapping table to find the affiliated trajectory, resulting in a
set Ctra of trajectories (Line 8). Now each trajectory in the
database D is in one of two groups: (i) Those that have already
been seen (contained in Ctra); and (ii) Those that have not been
seen yet (contained in D − Ctra).
Step 2: Since Ctra stores the candidates for the top-k results,
before we compute their real similarities w.r.t. Q (in Step 3),
we need to check whether other potential candidates still exist
among the unseen trajectories (D − Ctra).

Trajectories that can not be top-k candidates (in Lines
10-11) are pruned by comparing against the upper bound
of the similarity of all unseen trajectories (unseen UB) in
D − Ctra using Equation 8, and the k-th lower bound of the
seen trajectories Ctra ( LBseen by Equation 9). Further details
on the bounding computation are described in Section IV-B.
When the lower bound is not less than the upper bound (Line
14), the candidate set expansion stops, and Step 3 (Lines 15-
25) is triggered. Otherwise, the search region is expanded

(by incrementally increasing λ by Δ for the query points) to
locate more candidate points (in Step 1), and the corresponding
trajectories can be subsequently probed. Every iteration of Step
2 is referred to as an expansion in this paper, and c is the
number of expansions.
Step 3: The top-k results are chosen from the candidate set Ctra
by computing the upper bound for each candidate trajectory in
Ctra (Equation 10), and ranking the results in descending order
(Lines 14-15). Then the real similarity is computed (Equation
5) between each candidate trajectory Ti and Q (Line 17). If the
similarity of the k-th result (RS.min) is larger than the upper
bound of the next-to-compute trajectory (UBseen[i + 1]), the
algorithm can terminate and return the top-k results (Line 26).

Search Range. Observe that only a point containing at least
one query keyword can be a candidate point in Rc (qi). Hence,
the maximum threshold can be set to λmax

i for every query point
in Line 4 in Algorithm 1. The maximum length λmax

i of the
ranked list Rc (qi) can be computed as follows:

λmax
i =

|qi.act|∑
j=1

df (qi.act [j]) (6)

where df () records the number of points in D.P that contain
the keyword qi.act [j]. When λi > λmax

i , the ranked list Rc (qi)
can be maintained during the next round of the expansion, and
return the result directly using TkSK for qi in Line 7 because
all possible candidate points for qi have already been probed.
As the search range is increased, Δ is bounded by λmax

i for
each query point (Δ < λmax

i ).
In addition to maintaining λmax

i , a global λmax is also set
in Line 2 to support early termination. Early termination is
defined as:

λmax = max
qi∈Q

λmax
i (7)

The ranked list includes all possible trajectories, and there is
no need for further expansion. This is because candidate points
can only be found after all ranked lists have been probed.

B. Bounding the Computation
The ranked list Rc (qi) for a query point qi in the c-th round

of expansion is created dynamically as a list of points sorted by
their similarity w.r.t. query point qi. Let Rc (qi) [λ] denote the

λ-th point of the sorted list, and Ŝ(qi, Rc (qi) [λ]) denote the
similarity between qi and the λ-th point, and Rc (qi) [λ] .Tra
denote the trajectory containing the λ-th point. For each unseen
trajectory, no point can occur in any intermediate ranked
list. So for each query point qi, the spatial-textual similarity
between qi and a matching point (if any) in one of the unseen
trajectories must be less than Ŝ(qi, Rc (qi) [λ]). As a result,
for any unseen trajectory, the trajectory similarity between
the query Q and the trajectory is less than the sum of the
minimum similarity Ŝ(qi, Rc (qi) [λ]). Hence, the upper bound
for unseen trajectories from each TkSK call is computed as:

UBunseen(D − Ctra) =

|Q|∑
i=1

Ŝ(qi, Rc (qi) [λ])

|Q| (8)

For each trajectory T which has been checked, the existing
maximum similarities in all Rc (qi) can be summed and used
as the lower bound of T ’s similarity, which is less than or
equal to the real similarity because points may exist which are
not in Rc (qi):

602602602588588588588588588600600600
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q1

p13 0.7 T3

p21 0.7 T1

p22 0.55 T2

p14 0.25 T4

q2

p14 0.6 T4

p25 0.5 T5

p31 0.45 T1

p36 0.3 T6

q3

p42 0.5 T2

p41 0.4 T1

p35 0.4 T5

p46 0.2 T6

q1 q2 q3

1st Expansion 2nd Expansion 3rd Expansion

Fig. 3. The Table on the left shows the ranked lists for q1, q2, q3, and the
Figure on the right shows the first three rounds of the expansion for Q with
Δ = 1.

LBseen (T ) =

|Q|∑
i=1

max
j∈[1,λ]∧Rc(qi)[j]∈T

Ŝ(qi, Rc (qi) [j])

|Q| (9)

For points in T , but not appearing in Rc (qi), their respec-
tive similarities can not be greater than the similarity of the
λ-th point, Ŝ(qi, Rc (qi) [λ]). Thus the upper bound for T ’s
similarity w.r.t. Q is a summation of LBseen and λ-th point’s
similarity:

UBseen (T ) = LBseen (T ) +

|Q|∑
i=1∧T∩Rc(qi)=∅

Ŝ(qi, Rc (qi) [λ])

|Q|
(10)

Note that when |Rc (qi)| < λ, which occurs when the

ranked list is not full, ∀j ∈ (|Rc (qi)| , λ] , Ŝ(qi, Rc (qi) [j])
is set to 0 when computing the bound in Equations 8-10.

We now illustrate how these three bounds are computed
using the example shown in Figure 2 and Figure 3. For each
query point q1, q2, q3, all candidate points are retrieved and
ranked by similarity relative to the associated query point in
Figure 3. Here pji in the second column is the j-th point
for trajectory Ti, and the third column shows the similarity
for the query point, and the last column shows the trajectory
containing the point. Next the top-1 trajectory is found using
the ranked lists, and Δ is set to 1. In each of the three rounds
of expansion, Δ = 1 new points for each query point of Q are
searched. The three red points represent the exemplar query,
resulting in 3 new points in each round.

Example 3: In the first round of expansion, a top-1 spatial
keyword search is performed for every point, and the maximum
similarity for each query point is 0.7, 0.6 and 0.5 respectively.
Then by Equation 8-9, unseen UB = 0.7+0.6+0.5

3 = 0.6,

seen LB [1] = 0.7
3 = 0.233, so the search continues to the top-

2 points for each query point since unseen UB > seen LB [1].
Then unseen UB = 0.7+0.5+0.4

3 = 0.566, and seen LB [1] =
0.7+0.4

3 = 0.366 < 0.566, so the search continues to the

top-3 points. Now, unseen UB = 0.55+0.45+0.4
3 = 0.466,

seen LB [1] = 0.7+0.45+0.4
3 = 0.51 > 0.466, so the expansion

stops at c = 3-rd round. The scanned trajectories T1, T2, T3,
T4, T5 are checked, and T6 remains unchecked since it can be
safely pruned based on the current upper and lower bounds.

V. DYNAMIC EXPANSION

As shown in Step 2 of Algorithm 1, the ranked list is
expanded with the parameter Δ until the final candidate set
that contains the true top-k results is found. In this section,

we will first explain the impact that the choice of Δ has on
performance, and then propose a gap-bounded optimization
method called ILA-GAP to avoid the disadvantages of using
a fixed Δ.

A. Choosing a Δ Increment
The choice of Δ affects the number of times that TkSK is

called for each point in Q. Suppose that Algorithm 1 stops at
λf ∈ [k, λmax] in Line 2. Then, TkSK is called Fre (qi) times
for each query point qi:

Fre (qi) =

⎧⎨
⎩

⌈
λf−k
Δ

⌉
+ 1, λf < λmax

i⌈
λmax
i −k
Δ

⌉
+ 1, otherwise

(11)

where TkSK is no longer called since all candidate points have
been found when λf ≥ λmax

i .
We can see that TkSK in the current round of expansion will

repeatedly find results which have been probed in the former
round(s) of expansion, so minimizing Fre (qi) can improve
efficiency. For example, if Fre (qi) = 1, the minimum number
of expansions is performed. However, it is difficult to achieve
the desired goal when using a fixed Δ.

Worst case. For a certain query Q, every trajectory only
occurs in one ranked list of Q no matter how large Δ is, and
the lower bound of the seen trajectory similarities will never
be updated as the search range is expanded. In this case, λf =
λmax. Moreover, the lower bound can be computed directly
based on the top-k points in each ranked list, and the final
top-k results can be found using only these points. The upper
bound must be decreased to the lower bound based on the
maximum difference between the two bounds.

Best case. The lower bound represents the true top-k results
when all ranked lists have been fully computed, which implies
that the largest lower bound is equal to the upper bound. In
this case, λf = k. After the top-k computation is done for
every query point, all top-k trajectories have been found, and
the whole search process can safely terminate.

However, predicting λf or setting a proper Δ in advance
that minimizes Fre (qi) is difficult in practice. In order to
reduce Fre (qi), Δ should be increased. However, this may
result in too many trajectories being probed. Conversely,
repetitive lookups occur when Δ is also too small. So the
efficiency heavily depends on the choice of Δ, which in turn
depends on the collection and the query.

Instead of trying to tune Δ for each dataset, our aim is
to dynamically compute the difference between the upper and
lower bound, and use it as the increment in the next expansion
round in order to achieve a faster convergence. Consider the
following definition.

Definition 8: (Bound Gap) A Bounded Gap BG (c) is
defined as the difference between the lower bound and the
upper bound in the c-th round of expansion, namely:

BG (c) = |unseen UB− seen LB[k]|

≤
|Q|∑

i=1
Ŝ(qi, Rc (qi) [λ])

|Q| − ∑
qi∈Q

TkSK (qi, k,D.P )[k]

(12)

As λ is increased by Δ in a new expansion, the upper bound
will decrease and the lower bound will increase until the lower
bound is not less than the upper bound. So BG (c) is reduced
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monotonically. Notice that the biggest challenge is how to
make this happen efficiently while scanning fewer trajectories.

B. Adaptive Gap-bounded Expansion
To expand the ranked lists for a query after knowing the gap

between the two bounds, the simplest solution is to assign an
equal decreasing similarity by dividing the gap by |Q| for each
query point. However, we can further improve the lower bound
seen LB[k] and terminate the algorithm earlier by assigning
a different decreasing similarity for each query point. This
diversification of the expansion has been used successfully by
Chen et al. [3] in previous work, who dynamically assigned a
different Δ based on the sparsity of the area around a scanned
query point. Chen et al. proved that higher priority given to
the query points which scan sparse areas containing fewer
candidates can help increase the lower bound, and improve
efficiency by reducing the number of candidate trajectories.
Similarly, we assign a higher decreasing similarity to query
points in a sparse area. This can be achieved by checking how
many new trajectories are probed by each query point in each
round of the expansion. Using a decreasing similarity for the
ranked list of two adjacent expansions, we propose the concept
of similarity sparsity.

Definition 9: (Similarity Sparsity) Given a decrease of
the minimum similarity in ranking list from Ŝc (qi) to

Ŝc−1(qi), and the number of newly scanned trajectories in the
c-th expansion, the similarity sparsity is defined as:

Spac (qi) =
Ŝc−1 (qi)− Ŝc(qi)

|Rc (qi) .Tm| − |Rc−1 (qi) .Tm|
(13)

where Ŝc (qi) is the minimum similarity in the ranking list
of qi in the c-th expansion, and |Rc (qi) .Tm| is the number

of trajectories covered by Rc (qi), where Ŝ0(qi) is set to the
maximum similarity in the ranked list of qi initially.

A larger Spac (qi) means fewer trajectories are found, so
in the next round, a higher similarity should be assigned
to the query points in order to find fewer new trajectories,
and therefore increase the lower bound faster. Hence, the
new minimum similarity for the query point qi of the next
expansion is computed as:

Ŝc+1 (qi) = Ŝc (qi)−
BG (c)

2
· |Q| · Spac (qi)∑

qj∈Q
Spac (qj)

(14)

where
Spa

c
(qi)

∑

qj∈Q

Spa
c
(qj)

is the proportion that the upper bound

is decreased based on the similarity sparsity, and the new

upper bound expected is reduced by
BG(c)

2 in the (c+ 1)-th
expansion.

After computing the minimum similarity in the next ex-
pansion, it will be used to find new candidate points with a
higher similarity than it instead of finding Δ new points for
every query point in ILA. Instead, TkSK is expanded to search
for the points whose similarities are greater than Ŝc+1 (qi).
This search is referred to as a Top Similarity Spatial Keyword
Query (TsSK) henceforth. In contrast to TkSK, TsSK does not
maintain a result heap or update the k-th similarity, so pruning
is more efficient. For any TkSK which employs filtering unseen
objects based on upper bound, we can easily extend and set
the upper bound as the similarity and compute the number of
iterations we need to get this position directly, so it will jump

q1 q2 q3 

Bound Gap 
UB 

LB 

UB’ 

Sim 

Point 

LB1 

LB2 

1 

0 

Fig. 4. Gap-bounded Expansion

to this iteration directly, which make scanning significantly
more efficient. Based on the idea of gap bounding, and TsSK,
the refined Algorithm 2 is significantly more efficient and
robust when compared with the ILA approach described in
Section IV.

Algorithm 2: Gap-bounded Algorithm

Input: Trajectory database D, query Q
Output: Top k result set RS

1 RS ← ∅; c← 0;
2 foreach qi ∈ Q do
3 Rc (qi)← TkSK (qi, k,D.P );
4 while TRUE do

5 Ctra ←
|Q|⋃
i=1

Covered (Rc (qi));

6 if |Ctra| > k then
7 Same as line 10-24 in Algorithm 1;
8 foreach qi ∈ Q do
9 if |Rc (qi)| < λmax

i then
10 Update Ŝc+1 (qi) using Equation (16);

11 Rc+1 (qi)← TsSK
(
qi, Ŝc+1 (qi) , D.P

)
;

12 else
13 Rc+1 (qi)← Rc (qi);
14 c← c+ 1;
15 return RS;

The biggest difference between Algorithm 2 and Algo-
rithm 1 is that TkSK in no longer used in Line 3 after the
first expansion. Instead, if the lower bound is still smaller than
the upper bound, the minimum similarity Ŝc+1 (qi) is updated
for every query point qi used in the (c+ 1)-th expansion in
Line 10. Then, TsSK is called to find all the points with a
similarity greater than Ŝc+1 (qi) in Line 11. This is illustrated
in the example below.

Figure 4 shows how to accelerate the lookup process based
on gap bounding. We can see that when the three query points
(x-axis) have different similarity ranges (y-axis), the upper
bound UB (black dotted line) can be calculated by summing
the minimum of each range, and also the lower bound LB
(red dotted line) for the covered trajectories can be found.
Then, the gap bound can be computed, and used to predict the

upper bound UB
′

for the next round (the bold black dotted
line). Next, the similarity bound is assigned to q1, q2, q3 using
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Equation 14, and a new ranked list and a new lower bound is
computed. Here, there are two possible cases. Case 1: If the

new lower bound is larger than the predicted upper bound UB
′
,

namely LB1 > UB
′
, then the algorithm can terminate. Case

2: Otherwise, LB2 < UB
′

and iterations continue using the
monotonically decreasing gap bound. Now consider Figure 4
and the refined Algorithm 2 which shows an example of how
the pruning efficiency is improved using our new technique.

Example 4: After the first expansion, unseen UB = 0.6,
and LBseen [1] = 0.233, so BG (1) = 0.6 − 0.233 = 0.367.
Instead of setting Δ = 1 to do the expansion, we assign
a customized value to each qi based on Equation (16). So,
Ŝ2 (q1) = 0.7 − 0.367

2 × 3 × 0.7
0.7+0.6+0.5 = 0.485, Ŝ2 (q2) =

0.416 and Ŝ3 (q3) = 0.347. Accordingly in Algorithm 2,
TsSK is called to find the points whose similarity is not less
than Ŝ2 (qi). Then, the same ranked lists with Example 3
which needed three expansions are got by only two expansions
using ILA-GAP. The Gap-bounded algorithm improves the
likelihood of early termination.

VI. TWO-LEVEL THRESHOLD ALGORITHM

Both ILA and ILA-GAP exploit the TkSK method dur-
ing incremental expansion to filter out impossible results by
comparing the k-th result and the upper bound of any unseen
trajectories. However, recall from Line 5 of Algorithm 1, that
the same data points already probed in previous round(s) of
the expansion will be rescanned by TkSK in each iteration.
We refer to this as repetitive lookup in this paper. Recall from
Examples 4, 5, and Figure 3 that if we use ILA in Example 4,
p13, p

4
2, p

1
4 are scanned three times, and p41, p

2
5, p

2
1 are scanned

twice. In Example 5 where ILA-GAP is used, p13, p
4
2, p

1
4 still

need to be scanned twice.
Repetitive lookups also exist in spatial-only trajectory

search problems [3]. Qi et al. [11] used an R-tree to perform
spatial range queries for each query point to fill the ranked list,
where the radius is gradually increased in order to avoid repet-
itive lookups. However, the R-tree based expansion described
by Qi et al. [11] was designed for spatial-only expansion, and
it is not clear how to extend their solution to the spatial-
textual trajectory search problem we are exploring here. In
this section, we will describe how to support non-repetitive
expansion in both spatial and textual dimensions concurrently,
which can be used to compute a new upper bound similarity
for unseen trajectories, and achieve efficient rank-safe search.

A. Framework
The core component of our framework is the index used to

fill the ranked list non-repetitively and further filter out unseen
trajectories which cannot make it into the top-k. As shown in
Figure 5, the indexes used here are an inverted list, and grid
index, which are used as follows:

1) A rank-ordered inverted index for the terms. For every
keyword t, the points which contain t are sorted by their
TF·IDF weight in a descending order.

2) A grid-index labeled using a Z-curve that supports range
queries by accessing the leaf node around each query
point directly with an increasing radius.

Based on above index, the processing framework of 2TA
in Figure 5 is composed of two levels. In the first level,
each query point is decomposed into keywords t1, . . . , tn and
a location loc. The main objective is to scan candidates in

Level 1

Level 2

q1 q2 q3

t1 loctn t1 tn loc t1 tn loc

...

Grid-indexPosting List

... ...

1st

2nd

3th

Fig. 5. Incremental expansion on textual (a) and spatial (b) similarity

the lower level using the keyword posting lists, and the grid-
index for the location. In the second level, the posting lists
of t1, . . . , tn are scanned blockwise which is denoted by a
rectangle in the posting list, and stores a set of points that share
the same range by weight of keywords. Meanwhile, the cells
around the query point are scanned layer by layer, where points
which are closer to the query point are scanned preferentially.
The red cells are loaded in each iteration. When new points
are scanned, they will be inserted into the ranked list of the
query point for further computation and refinement.

For an unseen trajectory which has not been scanned,
according to Definition 6 and Definition 4, the upper bound
of the similarity for unseen trajectories can be computed by
summing up the maximum score of the current block in each
posting list, and in the grid index as:

UBunseen(D − Ctra) = α ·
∑
t∈Q

UBt(t, it)/|Q|+

(1− α) ·
∑

loc∈Q
UBs(loc, it)/|Q|

(15)

where it is the it-th iteration on each keyword and location,
UBt(t, it) (UBs(loc, it)) is the maximum textual (spatial) score
fetched from the it-th iteration for keyword t (location loc).
Based on above bound, we have the following lemma to filter
unseen trajectories.

Lemma 1: For a trajectory T which is not scanned by any
posting list or grid-index of Q, Ŝ(T,Q) ≤ UBunseen(D−Ctra).

Proof: Since T does exist in the ranked list, for any
point p in T we have Ŝ(qi, p) ≤ α · ∑

t∈qi
UBt(t, it) + (1 −

α) · UBs(qi.loc, it). Then Ŝ(T,Q) =
∑

qi∈Q
(Ŝ(qi, T ))/|Q| ≤∑

qi∈Q
(α · ∑

t∈qi
UBt(t, it) + (1 − α) · UBs(qi.loc, it))/|Q| =

UBunseen(D − Ctra).
Our approach draws inspiration from the RCA algorithm

of Zhang et al. [18], which processes a top-k spatial keyword
search using posting lists of query keywords which are or-
ganized using a Z-curve. As the similarity is the sum of the
spatial and textual sub-similarities, RCA processes TkSK as a
top-k aggregation query [6]. When compared with RCA, the
main difference is that our algorithm must search trajectories
instead of points. After identifying the points, further bound
refinements are necessary, and unrelated trajectories must be
filtered out. RCA only scans the posting lists for a single
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query point, and adds candidate to the result heap until the
similarity of the k-th item is not less than the upper bound of
the unprocessed points.

To reduce the cost of random access, points are scanned in
a batch for both spatial and textual data instead of accessing
a single point for each similarity computation, as shown in
Figure 5. Similar to RCA, 2TA divides each posting list into
ittmax blocks, and the whole space of the Z-curve into itsmax
blocks for a given location loc. In each iteration, 2TA loads
one block from each list concurrently. Here we will give a
brief description on how to divide the list scanning into a fixed
number of iterations and upper bound in it-th iteration.

Textual Scanning. The scanning operation in an inverted term
list is called ExploreTextual(t, it). As different keywords have
different weight ranges, in order to make sure the scanned
blocks are not empty, the maximum and minimum weights
of each keyword are computed as γmax(t) and γmin(t). Then
the range [γmax(t), γmin(t)] is divided into ittmax intervals and
filled with points according to their weight. This ensures that
none of the scanned blocks are empty. For the it-th block of
keyword t, the upper bound can be computed as:

UBt(t, it) =
γmax(t)− γmin(t)

itmax
· (itmax − it) + γmin(t) (16)

For instance, Figure 6 shows the posting list of “coffee”
which contains three blocks, and each block stores the points
which are bounded by a weight range. The first block stores all
of the points containing “coffee” with a weight between 0.53
and 0.7, such as p42, p32 and p63, and ExploreTextual(“coffee′′, 1)
will load these three points. After loading the first block in the
first iteration, the upper bound similarity of “coffee” is 0.53.

Coffee
,0.7
,0.7
,0.7

,0.4 ,0.35
,0.2

0.7 0.53 0.36 0.2
Fig. 6. Posting list of “coffee” with three blocks.

Spatial Scanning. In order to compute spatial similarity
using a grid-index (labeled with a Z-curve), the function
ExploreSpatial(loc, it) in the iteration it can be used. Given a
query location loc, the cells around loc within a radius covered
by a range of Z-curve labels [Lmin, Lmax] which includes the
label Lloc of cell the where loc is located (Lloc ∈ [Lmin, Lmax]).
By expanding the range [Lmin, Lmax], cells that are further
away can be loaded gradually. More details can be found in
the work of Zhang et al. [18]. Then the upper bound of the
spatial similarity for loc in the it-th iteration can be computed
as:

UBs(loc, it) =
Dmax − it · Dmax

itmax

Dmax
(17)

where Dmax is the maximum distance between any two unique
points in geographical space.

Note that in the case that the points in one posting list are
all scanned but the grid index is not, we set itsmax = ittmax.
When itsmax < ittmax, the worst case occurs when all spatial
candidates have been scanned, but the search continues to
access the term posting lists. However, there is no need to
continue scanning as all candidates have been identified, so the
additional work is unnecessary. Similarly, when itsmax > ittmax,
the same problem occurs when all postings lists have been

exhausted, but unscanned points remain in the grid index.
Hence, we can conclude that when ittmax = itsmax, the worst
case occurs, and points being scanned cannot affect the final
top-k list. Here itmax is used to represent both cases, and is
a key parameter that will affect the performance of queries,
as the size of the blocks depends on this value. In our
experiments, itmax is found using a parameter sweep as it is
dataset specific.

B. Two-level Threshold Algorithm

Algorithm 3: Two-level TA algorithm

Input: Trajectory database D, query Q, MT
Output: Top-k result set RS

1 it← 0; RS ← ∅;
2 while it < itmax do
3 foreach qi ∈ Q do
4 Rit (qi)← ExploreTextual (qi, it, D.P );
5 Rit (qi)← ExploreSpatial (qi, it, D.P );

6 Ctra ←
|Q|⋃
i=1

Covered (Rit (qi),MT );

7 if |Ctra| > k then
8 unseen UB = UBunseen(D − Ctra) (by Equation

15);
9 seen LB [] =

⋃
T∈Ctra

LBseen (T ) (by Equation 9);

10 Sort seen LB[] in decreasing order;
11 if seen LB[k] > unseen UB then
12 Ctra ← ∅;
13 for each qi ∈ Q do
14 for pj ∈ Rit(qi) do
15 if Ŝ(qi, pj) ≥ UBit(qi) then
16 Ctra ← Covered(pj ,MT);
17 Same as line 15-26 in Algorithm 1;
18 return RS;
19 it++;

Algorithm 3 presents the details of 2TA when using an
inverted list and a grid index. Similar to ILA and ILA-GAP,
the new algorithm still conducts incremental iteration using
a while loop (Line 2). A significant enhancement in 2TA
is that the expansion is performed at the keyword level and
the location level concurrently rather than performing them at
the point level first. In particular, Line 4 computes similarity
for the inverted lists (based on the keyword t) to retrieve the
points with the highest textual similarity, and Line 5 computes
the similarity of the locations using the grid index (based on
location loc) to retrieve the spatially closest points. Then the
trajectories Ctra are found for the points in Line 6. Another
significant difference in 2TA is the second round of filtering
(Line 12-16). Here, points in Ctra that have a lower bound
less than the bound of single query point are filtered out, so
the number of trajectories that need to be refined is reduced,
before computing the spatial-textual similarity. Finally, the
same refinement process as ILA and ILA-GAP (Line 17) is
used to find the final top-k results. Next we will show why a
second round of filtering is required.

Second Round Filtering. After all of the unseen trajectories
whose similarities are less than UBunseen(D−Ctra) are pruned,
the second round of filtering begins. This is required since
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the current set of candidates may still contain trajectories
whose similarities are smaller than the upper bound that was
computed using Equation 15, and therefore cannot be in the
top-k. To understand why, consider the following lemma:

Lemma 2: For qi ∈ Q, ∃p ∈ Rit(qi), Ŝ(p, qi) < UBit(qi).
where UBit(qi) is similarity upper bound of all unprocessed
points for qi in the it-th iteration, which is computed as:

UBit(qi) = α ·
∑
t∈qi

UBt(t, it) + (1− α) · UBs(qi.loc, it) (18)

Proof: Assume that a point p contains only one keyword
t in qi, and has an equal bounded weight for t, such that
Ŝ(p, qi) = UBt(t, it). The point p can be scanned and inserted
into Rit(qi), where according to Equation 18, UBit(qi) >
UBt(t, it). So, Ŝ(p, qi) < UBit(qi).

In the final expansion, points like p can be found in the
ranked list of every query point, which means that for a
scanned trajectory T , if the similarity of each query point qi
is less than UBit(qi), then Ŝ(Q,T ) < UBunseen(D − Ctra) =∑
qi∈Q

(UBit(qi))/|Q|, which implies that T cannot be a top-k

result. Hence, filtering out trajectories such as T before the
final stage of refinement is desirable.

A second round of filtering is performed to filter the bottom
part of Rit(qi), as shown in Lines 12-16 of Algorithm 3.
For every query point qi, the points with a similarity greater
than UBit(qi) are maintained, and the remaining points are
dropped. Then the union of all of the points is taken to
find the parent trajectories using the mapping table MT . The
ranked lists of qi are divided by UBit(qi), and are used to

maintain the top half of Rit(qi) as a new ranked list R
′
it(qi).

Based on the new ranked lists, the upper bound for trajectories
that are not covered can be computed using Equation 8
as

∑
qi∈Q

(UBit(qi))/|Q| = UBunseen(D − Ctra), which is less

than seen LB[k] according to the condition in Line 11 of
Algorithm 3, So, the uncovered trajectories can not be the
top-k results.

Comparison with ILA. Note that after the second round of
filtering, the new ranked lists R

′
it(qi) are the target of ILA.

As the upper bound calculated from R
′
it(qi) using Equation 8

is less than seen LB[k] derived from Equation 9, filtering in
ILA terminates. 2TA can achieve the same result with fewer
expansions.

Another efficiency concern in 2TA is that the algorithm
has to scan additional points which are removed in the second
round of filtering. It should be noted that ILA also needs to
scan the same number of points in the final expansion when
using TkSK. Consider the example in Figure 5 where RCA
is used with TkSK and the query point q1. For q1, RCA will
scan the posting list and grid index to find the top-λ points for
the ranked list in ILA until the upper bound is smaller than
the λ-th result. We denote the similarity of the λ-th item as
Ŝ(qi, p). The search stops at UBit(qi) ≤ Ŝ(qi, p). To determine
the ranked list with λ points, ILA has the same upper bound,
but scans more than λ candidates for the query point. The
candidates outside the top-λ points are actually the same points
dropped in second round of filtering by UBit(qi) in 2TA.

Generality. Our framework can also support spatial-only
trajectory search [3, 11, 15]. As shown in Figure 5, the

Para Value
|Q| 1,2,3,4,5,6,7,8,9,10

|q.act| 3,4,5,6,7,8,9,10
k 10,20,30,40,50,60
Δ 1000
α 0.5

itmax 150
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Fig. 7. Parameter choices (left), and a Δ parameter sweep (right).

spatial expansion can be achieved using a range query in the
grid-index. For spatial-only search, the inverted term lists are
ignored during the expansion. When compared with an R-tree
based expansion [11], the grid index can access the leaf node
around the query point directly, while an R-tree has to traverse
from root to the leaf node, which is less efficient in practice.

VII. ORDER-SENSITIVE SEARCH

In the previous three sections, an incremental expansion
algorithm was proposed for top-k spatial keyword search over
trajectories using a set of unordered query points.

In this section, we discuss how to process an order-
sensitive query using a new similarity metric which considers
the ordering of points in the query instead of treating it as a set
of points. First, we define order-sensitive similarity, and show
how to leverage our algorithms to efficiently process this new
query type.

Definition 10: (Order-sensitive Trajectory Similarity)
We define the order-sensitive trajectory similarity between T
and Q as:

Ŝo(Q,T ) =

⎧⎨
⎩

0, Q = ∅ or T = ∅

max(Ŝo(q, t) + Ŝo(Rest(Q), T ),

Ŝo(Q,Rest(T ))), otherwise

(19)

where q and t are the first point in Q and T respectively,
and Rest(Q) and Rest(T ) indicate the remaining trajectories
excluding the points q and t. This similarity computation yields
to a dynamic programming solution [3] with a complexity of
O(n2).

The Order-sensitive Exemplar Trajectory Query can be
formulated by replacing the Ŝ(Q,T ) with Ŝo(Q,T ) in Defi-
nition 7 directly. For the order-sensitive search, we can extend
the above algorithms for search. The upper bound will not
change as the highest similarities are summed together as in
the unordered case. However, the lower bound will change
as the ordering constraint can produce smaller similarities.
The computation can be executed using the recursion in
Equation 19 and dynamic programming. The new bounds of
trajectory T can be computed as follows:

LBo
seen (T ) = Ŝo(Q,T

′
) (20)

where T
′

is sub-trajectory composed by all searched points in
the top-k lists found during the incremental expansion.

UBo
seen (T ) = Ŝo(Q,T

′
) +

|Q|∑
i=1∧T∩Rc(qi)=∅

Ŝ(qi, Rc (qi) [λ])

|Q|
(21)

where the second part is the sum of the λ-th similarity in the
top-k lists belonging to the uncovered points of T .
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Fig. 8. Effect of α on the total running time for the LA (left) and NYC
(right) collections.
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Fig. 9. Effect of iteration times on the total running time for the LA (left)
and NYC (right) collections.

VIII. EXPERIMENTS

A. Experiment Setup

Dataset. Two trajectory datasets from Foursquare are used:
Los Angeles (LA) and New York (NY) [2, 7, 20]. Table IV
summarizes the number of trajectories, average length of
trajectory and the number of keywords in the trajectories.

Trajectory queries are generated as follows: First, we col-
lect all unique keywords and their frequencies in each dataset,
and randomly pick keywords based on the term’s distribution
to produce the text description of a point. Then, we extract
sub-trajectories of various lengths from the dataset to form
the spatial component of the points. Finally, we randomly pair
keywords with points to form a query. A total of 100 queries
are generated where the length per query varies from 3 to
10. All experimental results are averaged by running all 100
queries. Algorithms are implemented in Java, and ran on a PC
with a 3.30GHz CPU and 8GB RAM using Ubuntu 14.04.

Parameters. Figure 7 summarizes all of the parameters used
in this work, and the default values are underlined. For the
choice of search range increment Δ, a parameter sweep was
ran for both datasets, and the results are shown in Figure 7. The
running time decreases as Δ increases since fewer expansions
are needed before termination. However, using a very large
Δ can result in more unnecessary similarity computations. In
this work, we choose a default cutoff value of Δ = 1,000 (for
the baseline method ILA) as this is the earliest point that the
parameter converges in both datasets. A local minima could
be selected for each dataset, but doing so runs the risk of
overtuning and biasing the experimental results.

Algorithms for evaluation. We compare the following meth-
ods to process ETQ over two datasets. (1) ILA: The baseline

TABLE IV. FOURSQUARE DATASETS

Dataset |D| |D.P | |T | |q.act|
LA 31,557 215,614 6.83 14.67

NYC 49,027 206,416 4.21 9.96
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Fig. 10. Effect of k on the total running time for the LA (left) and NYC
(right) collections.
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Fig. 11. Effect of k on the total running time for the LA (left) and NYC
(right) collections with order constraint.

method proposed in section IV forming the framework of this
paper. Note that for the incremental expansion on spatial simi-
larity, we adopt the state-of-the-art IKNN method developed by
Qi et al. [12]. (2) ILA-GAP: The gap-based dynamic expan-
sion method built on top of the baseline proposed in Section V.
(3) 2TA: The proposed two-level threshold algorithm which
avoids repetitive search of points in Section VI.

Evaluation Metrics. We will explore the running time of
the algorithms proposed in Section VIII-C. In Section VIII-D
we explore the impact of several different variables on overall
performance.

B. Effect of parameters
First, we explore the effect of two critical parameters:

the textual-spatial weighting α, and the maximum number of
iterations required for convergence, itmax, when scanning all of
the posting lists in the 2TA algorithm.

As shown in Figures 8(a) and 8(b), when more weight
is put on spatial similarity, the running time for all methods
declines, which suggests that the pruning effect of the spatial
component is more significant than in the textual component.

Figure 9 shows the performance differences as itmax is
increased. The running time declines until itmax converges to
150 in both datasets. This is because fewer iterations cover
more non-top-k trajectories in the last iteration round. After
150, the running time begins to increase. This is because
fewer iterations can reduce the number of grid cell accesses.
Thus more cells and more candidates are covered in a single
iteration, and more time is spent accessing the candidates when
itmax is large.

This suggests that we can choose a single parameter
for both datasets easily as there is a clear similarity in the
performance characteristics. All three algorithms rely on the
choice of itmax, and show similar trends. Only the 2TA can
efficiently perform the parameter sweep. For α, if users want
to have more weight on textual similarity, efficiency is reduced,
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Fig. 12. Effect of |Q| on the total running time for the LA (left) and NYC
(right) collections.
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Fig. 13. Effect of |Q| on the total running time for the LA (left) and NYC
(right) collections with order constraint.

but overall performance is still acceptable. Henceforth, we set
itmax = 150 and α = 0.5.

C. Performance Evaluation
Before presenting further experimental details, a summary

of the main observations is:

1) For three main query dependent parameters |Q|, k and
|q.act|, 2TA has the best performance: 2TA is at least
two times faster than the baseline method ILA, and can
be five times faster in some cases.

2) The parameter k has the smallest effect to the perfor-
mance.

3) The parameter |q.act| affects the performance the most.
More keywords in the query increases the number of
candidate trajectories.

Effect of |Q|. Figure 12 shows that the running time for all
of methods increases linearly w.r.t. |Q| in both datasets. In
particular, ILA-GAP and 2TA have a performance between
0.07 and 0.3 second in both datasets, while ILA needs 1 - 2
seconds per query. The reasons for the performance difference
are two-fold: (1) When compared to ILA-GAP which manages
to compute a dynamic yet tighter increment in each round of
expansion, ILA uses a fixed Δ value for the increment, so ILA
usually needs 2 more rounds of expansion to stop, leading to
scanning more points; (2) When comparing against 2TA, ILA
has to perform repetitive searches on points found in previous
rounds of the expansion which are not required in 2TA.

Effect of |Q| on order-sensitive search. Figure 13 shows that
it costs more time to conduct all queries compared with non-
ordered search for all methods. There are two reasons: (1) The
computation of similarity based on dynamic programming is
time consuming (complexity of O(n2)); (2) The gap between
the lower bound and the upper bound is greater than that in
non-ordered search.

Effect of k. Figure 10 presents the running time w.r.t. k. We
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Fig. 14. Effect of |q.act| on the total running time for the LA (left) and
NYC (right) collections.
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Fig. 15. Effect of |q.act| on the total running time for the LA (left) and
NYC (right) collections with order constraint.

find that the running time not heavily influenced by the choice
of k, but the number of points in the query |Q| clearly has an
influence on performance, as shown in Figure 12. One possible
reason is that the lower bound of the k-th result does not
change too much as k increases, so it does not result in more
expansion rounds, which is the main performance bottleneck
in all of the algorithms. In contrast, when the number of
query points increases, the bounds do change as more ranked
lists are required to compute the upper bound for the unseen
trajectories, and the lower bound of the seen trajectories, which
translates into more computational costs.

Effect of k on order-sensitive search. When comparing
Figure 11 and 10, we see that the ordering constraint does
not incur an extra cost in query processing time, which is not
sensitive to k.

Effect of |q.act|. The relationship between the number of
keywords in each query point and the performance is presented
in Figure 14. The number of query points is fixed at 5, and the
number of keywords is increased for each query point (from
3 to 10). The running time of ILA and ILA-GAP increases
much faster than 2TA with respect to |Q| and k. As more
keywords are added, more posting lists must be scanned, and
so the gap bound between the upper and lower bound is greater,
which in turn results in more expansion rounds on average. In
contrast, 2TA can achieve is more robust as scanning repetition
is minimized in each round of the expansion.

Effect of |q.act| on order-sensitive search. When an ordering
constraint is applied, Figure 15 shows a similar trend with the
non-ordered search, but is less efficient in all three methods
since the similarity computation and more data points are
scanned which contain common keyword(s).

D. In-depth Analysis behind Efficiency
To better illustrate the advantages of ILA-GAP and 2TA,

we now conduct an in-depth performance analysis on three
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TABLE V. A COMPREHENSIVE ANALYSIS SHOWING THE AVERAGE NUMBER OF EXPANSIONS c, ITERATIONS itmax , THE LOWER BOUND seen LB OF

SEEN TRAJECTORIES, THE UPPER BOUND unseen UB OF UNSEEN TRAJECTORIES, AND THE NUMBER OF RANDOM ACCESS OF THE POINTS rp AND

TRAJECTORIES rt, frp IS NUMBER OF POINTS SHOWN IN ALL FINAL RANKING LISTS OF QUERY.

Type Method
LA NYC

rp frp rt unseen UB seen LB itmax c rp frp rt unseen UB seen LB itmax c

Un-order
ILA 29729 8143 4980 1.8471 2.3021 NA 2.7 55790 19242 8732 3.4275 3.5115 NA 2.8

ILA-GAP 26280 7012 3721 2.1740 2.2890 NA 2.2 52716 17324 8012 3.4319 3.5034 NA 2.3
2TA 10383 5383 2943 2.2341 2.2517 117 NA 32343 15771 7120 3.4632 3.4712 121 NA

Order
ILA 33085 10434 5762 1.62025 2.1552 NA 2.9 63935 27095 10234 3.0033 3.0862 NA 2.9

ILA-GAP 31688 9122 4211 1.9668 2.0687 NA 2.3 61488 25459 9790 3.0157 3.0936 NA 2.4
2TA 12374 6134 3020 2.0342 2.0510 130 NA 32896 23277 8143 3.0491 3.5897 132 NA

more aspects: (1) the number of expansions, (2) the number
of random accesses on points and trajectories, and (3) the final
lower and upper bound when query processing terminates. De-
tails for both non-ordered and order-sensitive search are shown
in Table V, and the best result in each column is highlighted
in bold. In summary, We make six main observations:
(1) 2TA scans the minimum number of points and trajectories
among all methods in both datasets.
(2) Regarding the number of expansions c which only applies
to ILA and ILA-GAP, a bigger c means that more points will
be scanned. ILA-GAP requires fewer expansions to find the
top-k candidate set than ILA, and also eliminates the effect of
the increment Δ, which is fixed in ILA.
(3) Regarding the final bound values when query processing
terminates, the upper bound of all three methods are nearly
identical (the difference is within 1 decimal point), and the
gap between the lower and upper bound of 2TA is smaller
than ILA-GAP, which is in turn smaller than ILA. This is
in line with our previous observations that ILA-GAP with a
tighter increment is able to scan fewer points than ILA.
(4) By comparing 2TA and ILA-GAP in Section VIII-C, we
conclude that controlling the number of points scanned is the
critical factor in the pruning step.
(5) For 2TA, the non-ordered search needs fewer iterations
when compared with the order-sensitive search, but is still
more robust than the other approaches.
(6) The second round of filtering in 2TA can filter extra points
effectively. In the LA dataset, it scans 10,383 points in the
first iteration, an 5,383 additional points remain in the top-k
for further refinement.

IX. CONCLUSION

In this work, we introduced the top-k exemplar trajectory
search problem, and proposed a framework using incremental
expansion and pointwise similarity. We have identified that
the most critical aspect in performance is minimizing the
number of data points scanned, and shown how to efficiently
compute the pointwise similarity between the data points
and the query points. In order to achieve this goal, we first
proposed a gap-based expansion method to reduce number
of expansions needed before finalizing a top-k candidate set,
leading to fewer scanned data points. However, this approach
still suffers from redundant computations between expansion
rounds. Therefore, we proposed a novel two-level Threshold
Algorithm to separate the scanning of points between spatial
and textual similarity in order to remove repetitive scans. We
have conducted extensive experiments to verify the efficiency
and scalability of the three proposed approaches. Finally,
our framework was generalized to handle both spatial-only
search, and spatial-textual search, and order-sensitive search
over trajectories.
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