
Computers & Operations Research 143 (2022) 105769

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Boosting ant colony optimization via solution prediction and machine
learning
Yuan Sun a,∗, Sheng Wang b, Yunzhuang Shen c, Xiaodong Li c, Andreas T. Ernst a, Michael Kirley d

a School of Mathematics, Monash University, Clayton, VIC, 3800, Australia
b Center for Urban Science and Progress, New York University, New York, NY, 11201, USA
c School of Computing Technologies, RMIT University, Melbourne, VIC, 3000, Australia
d School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, 3010, Australia

A R T I C L E I N F O

Keywords:
Meta-heuristic
Machine learning
Combinatorial optimization
Ant colony optimization
Optimal solution prediction

A B S T R A C T

This paper introduces an enhanced meta-heuristic (ML-ACO) that combines machine learning (ML) and
ant colony optimization (ACO) to solve combinatorial optimization problems. To illustrate the underlying
mechanism of our ML-ACO algorithm, we start by describing a test problem, the orienteering problem. In this
problem, the objective is to find a route that visits a subset of vertices in a graph within a time budget to
maximize the collected score. In the first phase of our ML-ACO algorithm, an ML model is trained using
a set of small problem instances where the optimal solution is known. Specifically, classification models
are used to classify an edge as being part of the optimal route, or not, using problem-specific features and
statistical measures. The trained model is then used to predict the ‘probability’ that an edge in the graph of
a test problem instance belongs to the corresponding optimal route. In the second phase, we incorporate the
predicted probabilities into the ACO component of our algorithm, i.e., using the probability values as heuristic
weights or to warm start the pheromone matrix. Here, the probability values bias sampling towards favoring
those predicted ‘high-quality’ edges when constructing feasible routes. We have tested multiple classification
models including graph neural networks, logistic regression and support vector machines, and the experimental
results show that our solution prediction approach consistently boosts the performance of ACO. Further, we
empirically show that our ML model trained on small synthetic instances generalizes well to large synthetic
and real-world instances. Our approach integrating ML with a meta-heuristic is generic and can be applied to
a wide range of optimization problems.
1. Introduction

Ant colony optimization (ACO) is a class of widely-used meta-
heuristics, inspired by the foraging behavior of biological ants, for solv-
ing combinatorial optimization problems (Dorigo et al., 1996; Dorigo
and Gambardella, 1997). Since its introduction in early 1990s, ACO
has been extensively investigated to understand both its theoretical
foundations and practical performance (Dorigo and Blum, 2005; Blum,
2005). A lot of effort has been made to improve the performance of
ACO, making it one of the most competitive algorithms for solving
a wide range of optimization problems. Whilst ACO cannot provide
any optimality guarantee due to its heuristic nature, it is usually able
to find a high-quality solution for a given problem within a limited
computational budget.

The ACO algorithm builds a probabilistic model to sample so-
lutions for an optimization problem. In this sense, ACO is closely

∗ Corresponding author.
E-mail addresses: yuan.sun@monash.edu (Y. Sun), swang@nyu.edu (S. Wang), s3640365@student.rmit.edu.au (Y. Shen), xiaodong.li@rmit.edu.au (X. Li),

andreas.ernst@monash.edu (A.T. Ernst), mkirley@unimelb.edu.au (M. Kirley).

related to Estimation of Distribution Algorithms and Cross Entropy
methods (Zlochin et al., 2004). The probabilistic model of ACO is
parametrized by a so-called pheromone matrix and a heuristic weight ma-
trix, which basically measure the ‘payoff’ of setting a decision variable
to a particular value. The aim of ACO is to evolve the pheromone matrix
so that an optimal (or a near-optimal) solution can be generated via the
probabilistic model in sampling. Previously, the pheromone matrix is
usually initialized uniformly and the heuristic weights are set based on
prior domain knowledge. In this paper, we develop machine learning
(ML) techniques to warm start the pheromone matrix or identify good
heuristic weights for ACO to use.

Leveraging ML to help combinatorial optimization has attracted
much attention recently (Bengio et al., 2021; Karimi-Mamaghan et al.,
2022). For instance, novel ML techniques have been developed to prune
vailable online 7 March 2022
305-0548/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cor.2022.105769
Received 28 April 2021; Received in revised form 24 February 2022; Accepted 25
 February 2022

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:yuan.sun@monash.edu
mailto:swang@nyu.edu
mailto:s3640365@student.rmit.edu.au
mailto:xiaodong.li@rmit.edu.au
mailto:andreas.ernst@monash.edu
mailto:mkirley@unimelb.edu.au
https://doi.org/10.1016/j.cor.2022.105769
https://doi.org/10.1016/j.cor.2022.105769
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2022.105769&domain=pdf

Computers and Operations Research 143 (2022) 105769Y. Sun et al.

i
t
m

t
t
L
b
2
a
m
o
i

Fig. 1. An illustration of the training procedure of our ML model. First, a set of orienteering problem instances are solved, with the optimal route highlighted in yellow in the
corresponding graph of orienteering problem instance (left figure). We then extract features (e.g., edge weight) to describe each edge of the graphs, and map each edge to the
feature space as a training point (middle figure). Finally, we apply a classification algorithm to learn a decision boundary in the feature space to well separate edges (training
points) that are part of the optimal routes from those which are not (right figure).
Fig. 2. The testing procedure of our ML model. Given an unsolved test orienteering problem instance (left figure), we first map each edge of the corresponding graph to a point
n the feature space (middle figure). Based on the location of the points with respect to the decision boundary learned in training, we can compute for each edge a probability
hat it belongs to an optimal route (right figure). The predictions are then used to bias the sampling of ACO towards using the edges with a larger predicted probability value
ore often when constructing feasible routes.
he search space of large-scale optimization problems to a smaller size
hat is manageable by existing solution algorithms (Sun et al., 2021b;
auri and Dutta, 2019; Sun et al., 2021a), to order decision variables for
ranch and bound or tree search algorithm (Li et al., 2018b; Shen et al.,
021), and to approximate the objective value of solutions (Fischetti
nd Fraccaro, 2019; Santini et al., 2021). There also exist ML-based
ethods that try to directly predict a high-quality solution for an

ptimization problem (Abbasi et al., 2020; Ding et al., 2020). The key
dea of these methods is typically solution prediction via ML; that is

aiming to predict the optimal solution for a given problem as closely
as possible.

Building upon these previous studies, we propose an enhanced
meta-heuristic named ML-ACO, that combines ML (more specifically
solution prediction) and ACO to solve combinatorial optimization prob-
lems. To illustrate the underlying mechanism of our proposed algo-
rithm, we first describe the orienteering problem, which is also used to
demonstrate the efficacy of ML-ACO. The aim of orienteering problem
is to search for a route in a graph that visits a subset of vertices within a
given time budget to maximize the total score collected from the visited
vertices (see Section 2.1 for a formal definition). The orienteering
problem has many real-world applications (Vansteenwegen et al., 2011;
Gunawan et al., 2016).

In the first phase of our ML-ACO algorithm, an ML model is trained
on a set of optimally-solved small orienteering problem instances with
known optimal route, as shown in Fig. 1. We extract problem-specific
features as well as statistical measures (see Section 3.1) to describe
each edge in the graphs of solved orienteering problem instances, and
map each edge to a training point in the feature space. Classification
algorithms can then be used to learn a decision boundary in the feature
2

space to differentiate the edges that are in the optimal routes from
those which are not. We have tested multiple existing classification
algorithms for this task including graph neural networks (Kipf and
Welling, 2017; Wu et al., 2021), logistic regression (Bishop, 2006) and
support vector machines (Boser et al., 1992; Cortes and Vapnik, 1995).
For an unsolved test orienteering problem instance, the trained ML
model can then be used to predict the ‘probability’ that an edge in the
corresponding graph belongs to the optimal route, as shown in Fig. 2.

In the second phase of our ML-ACO algorithm, we incorporate the
probability values predicted by our ML model into the ACO algorithm,
i.e., using the probability values to set the heuristic weight matrix or to
initialize the pheromone matrix of ACO. The aim is to bias the sampling
of ACO towards favoring the edges that are predicted more likely to
be part of an optimal route, and hopefully to improve the efficiency
of ACO in finding high-quality routes. In this sense, the idea of our
ML-ACO algorithm is also related to the seeding strategies that are used
to improve evolutionary algorithms (Liaw, 2000; Hopper and Turton,
2001; Friedrich and Wagner, 2015; Chen et al., 2018).

We use simulation experiments to show the efficacy of our ML-ACO
algorithm on the orienteering problem. The results show that our ML-
ACO algorithm significantly improves over the classic ACO in finding
high-quality solutions. We also test the use of different classification
algorithms, and observe that our solution prediction approach consis-
tently boosts the performance of ACO. Finally, we show that our ML
model trained on small synthetic problem instances generalizes well to
large synthetic instances as well as real-world instances.

In summary, we have made the following contributions:

• This paper is the first attempt, to our knowledge, at boosting the
performance of the ACO algorithm via solution prediction and
ML.

Computers and Operations Research 143 (2022) 105769Y. Sun et al.

w
S
p
p

2

A

2

p
t
e

t
𝐶
e
s

𝑣
p
p

s
𝜂
f
t
m

• We empirically show that our proposed ML-ACO algorithm signif-
icantly improves over the classic ACO, no matter which classifi-
cation algorithm is used in training.

• We also demonstrate the generalization capability of ML-ACO on
large synthetic and real-world problem instances.

The remainder of this paper is organized as follows. In Section 2,
e introduce the orienteering problem and the ACO algorithm. In
ection 3, we describe the proposed ML-ACO algorithm. Section 4
resents our experimental results, and the last section concludes the
aper and shows potential avenues for future research.

. Background and related work

We first describe the orienteering problem and then introduce the
CO algorithm in the context of orienteering problem.

.1. Orienteering problem

The orienteering problem finds its application in many real-world
roblems, such as tourist trip planning, home fuel delivery and building
elecommunication networks (Vansteenwegen et al., 2011; Gunawan
t al., 2016). Consider a complete directed graph 𝐺(𝑉 ,𝐸, 𝑆, 𝐶), where
𝑉 = {𝑣1,… , 𝑣𝑛} denotes the vertex set, 𝐸 = {𝑒𝑖,𝑗 | 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛} denotes
he edge set, 𝑆 = {𝑠1,… , 𝑠𝑛} denotes the score of each vertex, and
= {𝑐𝑖,𝑗 | 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛} denotes the time cost of traveling through

ach edge. In this paper, we will only consider directed graphs with
ymmetry in time costs, i.e., 𝑐𝑖,𝑗 = 𝑐𝑗,𝑖, however, the same idea can be

applied to general directed graphs. Assume 𝑣1 is the starting vertex and
𝑣𝑛 is the ending vertex. The objective of the orienteering problem is to
search for a path from 𝑣1 to 𝑣𝑛 that visits a subset of vertices within a
given time budget 𝑇max, such that the total score collected is maximized.
Thus, the orienteering problem can be viewed as a combination of
traveling salesman problem and knapsack problem. We use 𝑢𝑖 to denote
the visiting order of vertex 𝑣𝑖, and use a binary variable 𝑥𝑖,𝑗 to denote
whether vertex 𝑣𝑗 is visited directly after vertex 𝑣𝑖. The integer program
of the orienteering problem can be written as:

max
𝒙,𝒖

𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=2
𝑠𝑗𝑥𝑖,𝑗 , (1)

𝑠.𝑡.
𝑛
∑

𝑗=1
𝑥1,𝑗 =

𝑛
∑

𝑖=1
𝑥𝑖,𝑛 = 1, (2)

𝑛−1
∑

𝑖=1
𝑥𝑖,𝑘 =

𝑛
∑

𝑗=2
𝑥𝑘,𝑗 ≤ 1, 2 ≤ 𝑘 ≤ 𝑛 − 1; (3)

𝑢𝑖 − 𝑢𝑗 + 1 ≤ (𝑛 − 1)(1 − 𝑥𝑖,𝑗), 2 ≤ 𝑖, 𝑗 ≤ 𝑛; (4)
𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=2
𝑐𝑖,𝑗𝑥𝑖,𝑗 ≤ 𝑇max, (5)

𝑢𝑖 ≥ 0, 2 ≤ 𝑖 ≤ 𝑛; (6)

𝑥𝑖,𝑗 ∈ {0, 1}, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. (7)

The constraints (2) ensure that the path starts from vertex 𝑣1 and ends
in vertex 𝑣𝑛. The constraints (3) guarantee that each vertex in between
can only be visited at most once. The constraints (4) are the Miller–
Tucker–Zemlin subtour elimination constraints, and the constraint (5)
satisfies the given time budget. Note that this formulation is not compu-
tationally efficient, and there are some relatively trivial ways to make
it slightly stronger (Fischetti et al., 1998). However, this formulation is
sufficient for logical correctness.

The orienteering problem is NP-hard (Golden et al., 1987). Many
solution methods have been proposed to solve the orienteering problem
and its variants, including exact solvers (Fischetti et al., 1998; El-Hajj
et al., 2016; Archetti et al., 2016; Angelelli et al., 2017) and heuristics
or meta-heuristics (Kobeaga et al., 2018; Santini, 2019; Hammami
3

o

et al., 2020; Assunção and Mateus, 2021). Solving the orienteering
problem to optimality using exact solvers may take a long time, es-
pecially for large instances. However, in some real-world applications
such as tourist trip planning, we need to provide a high-quality solution
to users within a short time. In this case, meta-heuristics are useful to
search for a high-quality solution when the computational budget is
very limited. In the next subsection, we describe the meta-heuristic,
ACO, to solve the orienteering problem.

2.2. Ant colony optimization

The ACO algorithm is inspired by the behavior of biological ants
seeking the shortest path between food and their colony (Dorigo et al.,
1996; Dorigo and Gambardella, 1997). Unlike many other nature in-
spired algorithms, ACO has a solid mathematical foundation, based
on probability theory. The underlying mechanism of ACO is to build
a parametrized probabilistic model to incrementally construct feasible
solutions. The parameters of this probabilistic model are evolved over
time, based on the sample solutions generated in each iteration of the
algorithm. By doing this, better solution components are reinforced,
leading to an optimal (or near-optimal) solution in the end. The ACO
algorithm has been demonstrated to be effective in solving various
combinatorial optimization problems (Dorigo and Blum, 2005; Blum,
2005; Mavrovouniotis et al., 2016; Xiang et al., 2021; Jia et al., 2021;
Palma-Heredia et al., 2021).

As our main focus is to investigate whether ML can be used to
improve the performance of ACO, we simply test on two representative
ACO models — Ant System (AS) (Dorigo et al., 1996) and Max–Min Ant
System (MMAS) (Stützle and Hoos, 2000). The AS is one of the orig-
inal ACO algorithms, and MMAS is a well-performing variant (Blum,
2005). Note that ACO has been applied to solve the orienteering prob-
lem variants, e.g., team orienteering problem (Ke et al., 2008), team
orienteering problem with time windows (Montemanni et al., 2011;
Gambardella et al., 2012) and time-dependent orienteering problem
with time windows (Verbeeck et al., 2014, 2017). These works are
typically based on one of the early ACO models, possibly integrated
with local search methods. To avoid complication, we simply select the
AS and MMAS models, which are sufficient for our study.

The AS algorithm uses a population of 𝑚 ants to incrementally con-
struct feasible solutions based on a parametrized probabilistic model.
For the orienteering problem, a feasible solution is a path, consisting of
a set of connected edges. In one iteration of the algorithm, each of the
𝑚 ants constructs its own path from scratch. Starting from 𝑣1, an ant
incrementally selects the next vertex to visit until all the time budget is
used up. Note that as 𝑣𝑛 is the ending vertex, each ant should reserve
enough time to visit 𝑣𝑛.

Suppose an ant is at vertex 𝑣𝑖, and 𝑉𝑖 denotes the set of vertices
that this ant can visit in the next step without violating the time budget
constraint. The probability of this ant visiting vertex 𝑣𝑗 ∈ 𝑉𝑖 in the next
step is defined by

𝑝𝑖,𝑗 =
𝜏𝛼𝑖,𝑗𝜂

𝛽
𝑖,𝑗

∑

𝑘∈𝑉𝑖 𝜏
𝛼
𝑖,𝑘𝜂

𝛽
𝑖,𝑘

, (8)

where 𝜏𝑖,𝑗 is the amount of pheromone deposited by the ants for transi-
tion from vertex 𝑣𝑖 to 𝑣𝑗 ; 𝜂𝑖,𝑗 is the desirability of transition from vertex
𝑖 to 𝑣𝑗 ; 𝛼 ≥ 0 and 𝛽 ≥ 0 are control parameters. This means the
robability of visiting vertex 𝑣𝑗 ∈ 𝑉𝑖 from 𝑣𝑖 is proportional to the
roduct of 𝜏𝛼𝑖,𝑗𝜂

𝛽
𝑖,𝑗 .

The desirability of transition from vertex 𝑣𝑖 to 𝑣𝑗 , i.e., 𝜂𝑖,𝑗 , is usually
et based on prior knowledge. In the orienteering problem, we can set
𝑖,𝑗 to the ratio of the score collected at vertex 𝑣𝑗 to the time required
or traveling from vertex 𝑣𝑖 to 𝑣𝑗 : 𝜂𝑖,𝑗 = 𝑠𝑗∕𝑐𝑖,𝑗 . This computes the score
hat can be collected per unit time if traveling through edge 𝑒𝑖,𝑗 , and
easures the ‘payoff’ of including edge 𝑒𝑖,𝑗 in the path in terms of the
bjective value. By using these 𝜼 values, high-quality edges (i.e., those

Computers and Operations Research 143 (2022) 105769Y. Sun et al.

c
𝜏
s

𝜏

w
a
d

T
a
s
p
t
l
p
r

p
d

t
o
b

w
t
s

p
t
p

allowing for a large collected score per unit time) are more likely to be
sampled.

The pheromone values 𝝉 are typically initialized uniformly, and
are gradually evolved in each iteration of the algorithm, such that the
components (edges) of high-quality sample solutions gradually acquire
a large pheromone value. This also biases the sampling to using high-
quality edges more often. In each iteration, after all the 𝑚 ants have
ompleted their solution construction process, the pheromone values
𝑖,𝑗 , where 𝑖, 𝑗 = 1,… , 𝑛 and 𝑖 ≠ 𝑗, are updated based on the sample
olutions generated:

𝑖,𝑗 = (1 − 𝜌)𝜏𝑖,𝑗 +
𝑚
∑

𝑘=1
𝛥𝜏𝑘𝑖,𝑗 , (9)

here 𝜌 > 0 is the pheromone evaporation coefficient, and 𝛥𝜏𝑘𝑖,𝑗 is the
mount of pheromone deposited by the 𝑘th ant on edge 𝑒𝑖,𝑗 . Let 𝑦𝑘
enote the objective value collected by the 𝑘th ant, 𝑦best be the best

objective value found so far, and 𝑄 > 0 be a constant. We can define
𝛥𝜏𝑘𝑖,𝑗 = 𝑦𝑘∕(𝑦best𝑄), if edge 𝑒𝑖,𝑗 is used by the 𝑘th ant; otherwise 𝛥𝜏𝑘𝑖,𝑗 = 0.

he amount of pheromone deposited by an ant when it travels along
path is proportional to the objective value of the path. As we are

olving a maximization problem, edges that appear in high-quality
aths are reinforced (i.e., acquiring a large pheromone value), so that
hese edges are more likely to be used when constructing paths in the
ater iterations. This sampling and evolving process is repeated for a
redetermined number of iterations, and the best solution generated is
eturned in the end.

The MMAS algorithm is a variant of AS, which uses the same
robabilistic model (Eq. (8)) to construct feasible solutions. The key
ifference between MMAS and AS is how the pheromone matrix (𝝉) is

updated. The MMAS algorithm only uses a single solution to update
the pheromone matrix in each iteration, in contrast to AS which uses
a population of 𝑚 solutions. This single solution can either be the best
solution generated in the current iteration (iteration-best) or the best
one found so far (global-best). The use of a single best solution makes
he search more greedy towards high-quality solutions, in the sense that
nly the edges in the best solution get reinforced. Let 𝒙best denote the
est solution and 𝑦best be the objective value of 𝒙best . The pheromone

values 𝜏𝑖,𝑗 for each pair of 𝑖, 𝑗 = 1,… , 𝑛 and 𝑖 ≠ 𝑗 are updated as

𝜏𝑖,𝑗 = (1 − 𝜌)𝜏𝑖,𝑗 + 𝛥𝜏best𝑖,𝑗 , (10)

where 𝛥𝜏best𝑖,𝑗 = 1∕𝑦best if edge 𝑒𝑖,𝑗 is in the best solution 𝒙best ; otherwise
𝛥𝜏best𝑖,𝑗 = 0.

The second key difference between MMAS and AS is that the
pheromone values in MMAS are restricted to a range of [𝜏min, 𝜏max].
After the pheromone values have been updated in each iteration using
Eq. (10), if a pheromone value 𝜏𝑖,𝑗 > 𝜏max, we reset it to the upper
bound 𝜏max. This avoids the situation where an edge accumulates a
very large pheromone value, such that it is (almost) always selected
in sampling based on the probabilistic model. The upper bound on
pheromone values is derived as

𝜏max =
1

𝜌 ⋅ 𝑦opt
, (11)

where 𝑦opt is the optimal solution of the problem instance. In practice,
we often substitute 𝑦opt with the best solution found so far to compute
the upper bound, since we do not have 𝑦opt before solving the problem.
Similarly if a pheromone value 𝜏𝑖,𝑗 < 𝜏min, we reset it to the lower bound
𝜏min. This ensures the probability of selecting any edge in sampling
does not reduce to zero. In this sense, the probability of generating
the optimal solution via sampling approaches one if given an infinite
amount of time. We simply set the lower bound to

𝜏min =
𝜏max
2𝑛

, (12)

here 𝑛 is the problem dimensionality. This setting is consistent with
he original paper (Stützle and Hoos, 2000) for solving the traveling
alesman problem.
4

The MMAS algorithm also uses an additional mechanism called
heromone trail smoothing to deal with premature convergence. When
he algorithm has converged, the pheromone values are increased
roportionally to their difference to 𝜏max:

𝜏𝑖,𝑗 = 𝜏𝑖,𝑗 + 𝛿 ⋅ (𝜏max − 𝜏𝑖,𝑗), (13)

where 0 ≤ 𝛿 ≤ 1 is a control parameter. In the extreme case 𝛿 = 1, it is
equivalent to restarting the algorithm, in the sense that the pheromone
values are reinitialized uniformly to 𝜏max. We activate the pheromone
trail smoothing mechanism if there is no improvement in the objective
value for a predetermined number of consecutive iterations 𝑇pts.

3. Boosting ant colony optimization via solution prediction

This section presents the proposed ML-ACO algorithm, that inte-
grates ML with ACO to solve the orienteering problem. The main idea
of our ML-ACO algorithm is first to develop an ML model, aiming to
predict the probability that an edge in the graph of an orienteering
problem instance belongs to the optimal route. The training and testing
procedures of our ML model are illustrated in Figs. 1 and 2 respectively.
The predicted probability values are then leveraged to improve the
performance of ACO in finding high-quality solutions.

In the first phase of our ML-ACO algorithm, we construct a training
set from small orienteering problem instances (graphs), that are solved
to optimality by a generic exact solver — CPLEX V12.8.0. We treat
each edge in a solved graph as a training point, and extract several
graph features as well as statistical measures to characterize each edge
(Section 3.1). The edges that are part of the optimal route obtained by
CPLEX are called positive training points and labeled as 1; otherwise
they are negative training points labeled as −1. Note that the decision
variables of the edges that do not belong to the optimal route have a
value of zero in the optimal solution produced by CPLEX. We call these
edges negative training points to be consistent with the ML literature.
This then becomes a binary classification problem, where the goal is to
learn a decision rule based on the extracted features to well separate
the positive and negative training points. We will test multiple classifi-
cation algorithms for this task. Given an unsolved orienteering problem
instance, the trained ML model can then be applied to predict for each
edge a probability that it belongs to the optimal route (Section 3.2).

In the second phase of ML-ACO, the probability values predicted
by our ML model are then incorporated into the probabilistic model of
ACO to improve its performance. The idea is to use the edges that are
predicted more likely to be in an optimal route more often in the sam-
pling process of ACO. By doing this, high-quality routes can hopefully
be generated more quickly. We will use the predicted probability values
to either seed the pheromone matrix or set the heuristic weight matrix of
ACO (Section 3.3).

The general procedure of our ML-ACO algorithm can be summarized
as follows:

1. Solve small orienteering problem instances to optimality using
CPLEX;

2. Construct a training set from the optimally-solved problem in-
stances;

3. Train an ML model offline to separate positive and negative
training points (edges) in our training set;

4. Predict which edges are more likely to be in an optimal route
for a test (unsolved) problem instance;

5. Incorporate solution prediction into ACO to boost its perfor-
mance.

Note that our ML model is based on the edge representation of
solutions for the orienteering problem, i.e., each edge in the graph
belongs to a route (solution) or not. A more efficient way typically used
by ACO to represent a route is using a sequence of vertices. A potential
avenue for future research would be to develop an ML model based
on the vertex representation to predict the order in which vertices are

Computers and Operations Research 143 (2022) 105769Y. Sun et al.

T
s
𝑣
r

𝑓

visited in the optimal route. This will become a multiclass classification
problem in contrast to the binary classification problem developed in
this paper.

3.1. Constructing training set

We construct a training set from optimally-solved orienteering prob-
lem instances on complete graphs, where each edge is a training point.
We assign a class label 1 to edges that belong to the optimal route
and −1 to those who do not. Three graph features and two statistical
measures are designed to characterize each edge, which are detailed
below.

Recall that the objective of orienteering problem 𝐺(𝑉 ,𝐸, 𝑆, 𝐶) is to
search for a path that visits a subset of vertices within a given time
budget 𝑇max, to maximize the total score collected. Three factors are
relevant to the objective, i.e., vertex scores 𝑆, edge costs 𝐶 and time
budget 𝑇max. The first graph feature we design to describe edge 𝑒𝑖,𝑗 , is
the ratio between edge cost 𝑐𝑖,𝑗 and the time budget 𝑇max

𝑓1(𝑒𝑖,𝑗) =
𝑐𝑖,𝑗
𝑇max

, (14)

where 𝑖, 𝑗 = 1,… , 𝑛 and 𝑖 ≠ 𝑗. Intuitively, if 𝑐𝑖,𝑗 > 𝑇max, the edge
𝑒𝑖,𝑗 certainly cannot appear in any of the feasible solutions. A stronger
preprocessing criterion would be to eliminate edge 𝑒𝑖,𝑗 if 𝑐1,𝑖 + 𝑐𝑖,𝑗 +
𝑐𝑗,𝑛 > 𝑇max, where 𝑣1 is the starting vertex and 𝑣𝑛 is the ending vertex.
However, this type of exact pruning mechanism is not expected to
eliminate many edges from a problem instance.

Another informative feature for describing edge 𝑒𝑖,𝑗 is the ratio
between vertex score 𝑠𝑗 and edge cost 𝑐𝑖,𝑗 , which computes the score
we can collect immediately from vertex 𝑣𝑗 per unit time if taking the
edge 𝑒𝑖,𝑗 . We normalize this ratio of edge 𝑒𝑖,𝑗 by the maximum ratio of
the edges that originates from vertex 𝑣𝑖,

𝑓2(𝑒𝑖,𝑗) =
𝑠𝑗∕𝑐𝑖,𝑗

max𝑘=1,…,𝑛 𝑠𝑘∕𝑐𝑖,𝑘
. (15)

his normalization is useful because it computes the relative payoff of
electing edge 𝑒𝑖,𝑗 , comparing to the alternative ways of leaving vertex
𝑖. Similarly, we also normalize the ratio of edge 𝑒𝑖,𝑗 by the maximum
atio of the edges that ends in vertex 𝑣𝑗 ,

3(𝑒𝑖,𝑗) =
𝑠𝑗∕𝑐𝑖,𝑗

max𝑘=1…,𝑛 𝑠𝑗∕𝑐𝑘,𝑗
. (16)

This computes the relative payoff of visiting vertex 𝑣𝑗 via edge 𝑒𝑖,𝑗 , com-
paring against other ways of visiting vertex 𝑣𝑗 . These graph features are
computationally very cheap, but they only capture local characteristics
of an edge. Hence, we also adopt two statistical measures, originally
proposed in Sun et al. (2021b), to capture global features of an edge.

The two statistical measures rely on random samples of feasible
solutions (routes). We use the method presented in Appendix A.1
to generate 𝑚 random feasible solutions, denoted as {𝒙1,𝒙2,… ,𝒙𝑚},
and their objective values denoted as {𝑦1, 𝑦2,… , 𝑦𝑚}. Each solution
𝒙 is a binary string, where 𝑥𝑖,𝑗 = 1 if the edge 𝑒𝑖,𝑗 is in the route;
otherwise 𝑥𝑖,𝑗 = 0. The time complexity of sampling 𝑚 feasible solutions
for an 𝑛-dimensional problem instance is (𝑚𝑛), which is proved in
Appendix A.1. The sample size 𝑚 should be larger than 𝑛, otherwise
there will be some edges that are never sampled. We will set 𝑚 = 100𝑛
in our experiments, unless explicitly indicated otherwise.

The first statistical measure for characterizing edge 𝑒𝑖,𝑗 is computed
based on the ranking of sample solutions

𝑓𝑟(𝑒𝑖,𝑗) =
𝑚
∑

𝑘=1

𝑥𝑘𝑖,𝑗
𝑟𝑘

, (17)

where 𝑟𝑘 denotes the ranking of the 𝑘th sample in terms of its objective
value in descending order. This ranking-based measure assigns a large
score to edges that frequently appear in high-quality sample solutions,
in the hope that these edges may also appear in an optimal solution.
5

We normalize the ranking-based score of each edge by the maximum
score in a problem instance to alleviate the effects of different sample
size 𝑚

𝑓4(𝑒𝑖,𝑗) =
𝑓𝑟(𝑒𝑖,𝑗)

max𝑝,𝑞=1,…,𝑛 𝑓𝑟(𝑒𝑝,𝑞)
. (18)

The other statistical measure employed is a correlation-based mea-
sure, that computes the Pearson correlation coefficient between each
variable 𝑥𝑖,𝑗 and objective values 𝑦 across the sample solutions:

𝑓𝑐 (𝑒𝑖,𝑗) =

∑𝑚
𝑘=1(𝑥

𝑘
𝑖,𝑗 − 𝑥̄𝑖,𝑗)(𝑦𝑘 − 𝑦̄)

√

∑𝑚
𝑘=1(𝑥

𝑘
𝑖,𝑗 − 𝑥̄𝑖,𝑗)2

√

∑𝑚
𝑘=1(𝑦𝑘 − 𝑦̄)2

, (19)

where 𝑥̄𝑖,𝑗 =
∑𝑚

𝑘=1 𝑥
𝑘
𝑖,𝑗∕𝑚, and 𝑦̄ =

∑𝑚
𝑘=1 𝑦

𝑘∕𝑚. As the orienteering
problem is a maximization problem, edges that are highly positively
correlated with the objective values are likely to be in an optimal route.
Similarly, we normalize the correlation-based score of each edge by the
maximum correlation value in a problem instance:

𝑓5(𝑒𝑖,𝑗) =
𝑓𝑐 (𝑒𝑖,𝑗)

max𝑝,𝑞=1,…,𝑛 𝑓𝑐 (𝑒𝑝,𝑞)
. (20)

The time complexity of directly computing these two statistical
measures based on the binary string representation 𝐱 is (𝑚𝑛2), as we
need to visit every bit in each of the 𝑚 binary strings. To improve the
time efficiency, we adopt the method proposed in Sun et al. (2021b),
which represents the sample solutions using sets instead of strings. We
then are able to compute the statistical measures in (𝑚𝑛 + 𝑛2) time.
The details of how to efficiently compute these measures are presented
in Appendix A.2.

In summary, we have extracted five features (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5) to
characterize each edge (training point). For a problem instance with 𝑛
vertices, we can extract 𝑛(𝑛 − 1) training points, as there are 𝑛(𝑛 − 1)
directed edges in the corresponding complete graph. We use multiple
solved problem instances to construct our training set S = {(𝒇 𝑖, 𝑙𝑖) ∣ 𝑖 =
1,… , 𝑛𝑡}, where 𝒇 𝑖 is the 5-dimensional feature vector; 𝑙𝑖 ∈ {−1, 1} is
the class label of the 𝑖th training point; and 𝑛𝑡 is the number of training
points.

3.2. Training and solution prediction

After we have obtained a training set S, our goal is then to learn
a decision boundary to separate positive (label 1) and negative (label
−1) training points in S as well as possible. This is a typical binary
classification problem, that can be solved by any off-the-shelf classi-
fication algorithm. To see the effects of using different classification
algorithms, we compare three alternatives for this task, namely, support
vector machine (SVM) (Boser et al., 1992; Cortes and Vapnik, 1995), lo-
gistic regression (LR) (Bishop, 2006), and graph convolutional network
(GCN) (Kipf and Welling, 2017; Wu et al., 2021). SVM and LR are well-
known traditional algorithms with a solid mathematical foundation,
and GCN is a popular deep neural network based on graph structure
of a problem. This comparison is interesting, because it sheds light on
whether a ‘deep’ model outperforms a ‘shallow’ model in the context of
solution prediction for combinatorial optimization. A brief description
of the three learning algorithms can be found in Appendix A.3.

In our training set, the number of positive training points is much
smaller than that of negative training points. Considering an orienteer-
ing problem instance with 𝑛 vertices, the number of edges appearing
in an optimal route is less than 𝑛, and the total number of edges in the
directed complete graph is 𝑛(𝑛 − 1). Hence, the ratio between positive
and negative edges is less than 1∕(𝑛 − 2). In this sense, our training
set is highly imbalanced, and classification algorithms tend to classify
negative training points better than the positive points. To address this
issue, we penalize misclassifying positive training points more by using
a larger regularization parameter 𝑟+, in contrast to that of negative
training points 𝑟− (see the loss functions (25), (28) and (30) of the

Computers and Operations Research 143 (2022) 105769Y. Sun et al.

w

a
m
p

o

t
a

classification algorithms in Appendix A.3). In our experiments, we set
𝑟− = 1 and 𝑟+ = 𝑛−1∕𝑛1, where 𝑛−1 and 𝑛1 are the number of negative
and positive points in our training set.

In the testing phase, we can apply the trained model to predict a
scalar 𝑧𝑖,𝑗 for each edge 𝑒𝑖,𝑗 in an unseen orienteering problem instance,

here 𝑖, 𝑗 = 1,… , 𝑛 and 𝑖 ≠ 𝑗. For GCN, 𝑧𝑖,𝑗 is the output of the last
layer. For SVM and LR, 𝑧𝑖,𝑗 is computed as 𝑧𝑖,𝑗 = 𝒘𝑇

∗ 𝒇
𝑖,𝑗 + 𝑏∗, where

(𝒘∗, 𝑏∗) are the optimized parameters, and 𝒇 𝑖,𝑗 is the feature vector of
edge 𝑒𝑖,𝑗 . We then feed the predicted value 𝑧𝑖,𝑗 into the logistic function
to normalize it to a range of [0, 1]:

𝑝𝑖,𝑗 =
1

1 + 𝑒−𝑧𝑖,𝑗
. (21)

The value of 𝑝𝑖,𝑗 approaches 1 if 𝑧𝑖,𝑗 approaches infinity; and 𝑝𝑖,𝑗
approaches 0 when 𝑧𝑖,𝑗 approaches negative infinity. In this sense,
𝑝𝑖,𝑗 can be interpreted as the probability of edge 𝑒𝑖,𝑗 belonging to an
optimal solution. In the next subsection, we will explore multiple ways
of incorporating the predicted probability values 𝑝𝑖,𝑗 into ACO to guide
its sampling process.

3.3. Incorporating solution prediction into ACO

Recall that the probabilistic model of ACO heavily depends on the
heuristic weight matrix 𝜼, as shown in Eq. (8). The 𝜂𝑖,𝑗 value is a ‘quality’
measure of edge 𝑒𝑖,𝑗 , indicating if it is beneficial to include edge 𝑒𝑖,𝑗 in
a solution in order to obtain a large objective value. The 𝜼 values are
usually set based on a heuristic rule, for instance in the orienteering
problem we can set 𝜂𝑖,𝑗 = 𝑠𝑗∕𝑐𝑖,𝑗 , where 𝑠𝑗 is the score of vertex 𝑣𝑗 and
𝑐𝑖,𝑗 is the cost of edge 𝑒𝑖,𝑗 . Here, we use the probabilities (𝒑) predicted
by our ML model to set 𝜼 values: 𝜂𝑖,𝑗 = 𝑝𝑖,𝑗 , and compare it against the
heuristic rule: 𝜂𝑖,𝑗 = 𝑠𝑗∕𝑐𝑖,𝑗 . We also explore a hybrid approach that sets
the 𝜼 values to the product of our ML prediction and the heuristic rule:
𝜂𝑖,𝑗 = 𝑝𝑖.𝑗 ⋅ 𝑠𝑗∕𝑐𝑖,𝑗 , for each pair of 𝑖, 𝑗 = 1,… , 𝑛 and 𝑖 ≠ 𝑗.

The pheromone matrix 𝝉 is another important parameter of ACO.
The 𝝉 values are usually initialized uniformly, and are evolved in each
iteration of ACO. Instead, we initialize the 𝝉 values by our predicted
probabilities, i.e., 𝜏𝑖,𝑗 = 𝑝𝑖,𝑗 . By doing this, better 𝝉 values hopefully
can be evolved more quickly, and thus high-quality solutions can be
constructed earlier. As the pheromone values of the MMAS algorithm
are restricted to a range of [𝜏min, 𝜏max], we re-scale the predicted prob-
bilities 𝒑 to [𝜏min, 𝜏max]. In addition, if the pheromone trail smoothing
echanism is triggered, we re-initialize the 𝝉 values to the rescaled
robabilities.

To summarize, we consider three different ways of incorporating
ur solution prediction into ACO:

1. Set the 𝜂𝑖,𝑗 value to the predicted probability value 𝜂𝑖,𝑗 = 𝑝𝑖,𝑗 , and
initialize 𝜏𝑖,𝑗 uniformly;

2. Set the 𝜂𝑖,𝑗 value to the product of the predicted probability and
a heuristic rule: 𝜂𝑖,𝑗 = 𝑝𝑖,𝑗 ⋅ 𝑠𝑗∕𝑐𝑖,𝑗 , and initialize 𝜏𝑖,𝑗 uniformly;

3. Set the 𝜂𝑖,𝑗 value by the heuristic rule: 𝜂𝑖,𝑗 = 𝑠𝑗∕𝑐𝑖,𝑗 , and initialize
𝜏𝑖,𝑗 based on the predicted probability value: 𝜏𝑖,𝑗 = 𝑝𝑖,𝑗 .

In our experiments, we will compare our ML-enhanced ACO with the
classic ACO that sets the 𝜂𝑖,𝑗 value by the heuristic rule (𝜂𝑖,𝑗 = 𝑠𝑗∕𝑐𝑖,𝑗)
and initializes 𝜏𝑖,𝑗 uniformly.

4. Experiments

We empirically show the efficacy of our ML models for enhancing
the performance of ACO via solution prediction for solving the orien-
teering problem. Specifically, we explore different ways of integrating
ML prediction and ACO in Section 4.1 and compare the effects of
using different ML algorithms for solution prediction in Section 4.2. We
then test the generalization capability of our model to large synthetic,
6

benchmark, and real-world problem instances in Sections 4.3, 4.4,
and 4.5, respectively. Finally, we compare our method against the
state-of-the-art algorithms in Section 4.6.

Our source code is publicly available online at https://github.com/
yuansuny/MLACO. For the ML algorithms, we use the SVM model
implemented in the LIBSVM library (Chang and Lin, 2011), and the
LR model implemented in the LIBLINEAR library (Fan et al., 2008).
For GCN, we implement it using TensorFlow (Abadi et al., 2015). Our
experiments are conducted on a high performance computing server at
Monash University — MonARCH, using a NVIDIA Tesla P100 GPU and
multiple types of CPUs that are at least 2.40 GHz. Each CPU is equipped
with 4 GB memory.

To construct a training set, we generate 100 orienteering problem
instances with 50 vertices. For each vertex, we randomly generate a pair
of real numbers between 0 and 100 as its coordinates in the Euclidean
space. We assign a score of 0 to the starting and ending vertices, and
generate a random integer between 0 and 100 as the score for each of
he other vertices. The total distance budget (or time budget) is set to
n integer randomly generated between 100 and 400 for each problem

instance. We then use CPLEX to solve these 100 problem instances,
among which 90 are solved to optimality within a cutoff time 10,000 s
given to each instance. The total time taken to solve the 90 problem
instances to optimality is about 11.5 h if using a single CPU, and the
time can be significantly reduced if using multiple CPUs. To train the
‘deep’ GCN model, we construct a large-sized training set using all the
90 solved problem instances which contains 220,500 training points. To
train the ‘shallow’ LR and SVM models, we only use the first 18 solved
problem instances, as using more training data cannot further improve
the performance of these models.

4.1. Efficacy of integrating machine learning into ACO

We investigate whether the performance of ACO can be improved
by solution prediction. To do so, we train a linear SVM model on
our training set, that takes about 31 s. For testing, we generate 100
problem instances, each with 100 vertices, in the same way as we
generate the training instances. We use the trained SVM model to
predict a probability 𝑝𝑖,𝑗 for each edge 𝑒𝑖,𝑗 in a test problem instance.
The prediction time is about 0.7 s, which is negligible.

We explore three different ways of incorporating the solution pre-
diction into the probabilistic model of ACO, as shown in Section 3.3.
We denote these hybrid models as (1) SVM-ACO𝜂 , that sets 𝜂𝑖,𝑗 = 𝑝𝑖,𝑗 ;
(2) SVM-ACO𝜂̂ that sets 𝜂𝑖,𝑗 = 𝑝𝑖,𝑗 ⋅ 𝑠𝑗∕𝑐𝑖,𝑗 ; and (3) SVM-ACO𝜏 that
initializes 𝜏𝑖,𝑗 based on 𝑝𝑖,𝑗 . We test two ACO variants, AS and MMAS,
which are detailed in Section 2.2. The default parameter settings for
AS and MMAS are: 𝛼 = 1, 𝛽 = 1, 𝜌 = 0.05, 𝛿 = 0.5, 𝑇pts = 100, and
𝑄 = 100. The values for 𝜏max and 𝜏min are computed based on Eqs. (11)
and (12). For MMAS, the iteration-best solution is used to update the
pheromone matrix. These parameter values are selected based on the
original papers (Dorigo et al., 1996; Stützle and Hoos, 2000) and our
preliminary experimental study (see Appendix A.4 for details).

To show the efficacy of our ML prediction, we first compare the
initial probabilistic models of SVM-ACO𝜂 and SVM-ACO𝜂̂ against that
of the classic ACO algorithm without ML enhancement. Note that the
initial probabilistic model of SVM-ACO𝜏 is the same as that of SVM-
ACO𝜂̂ under our parameter settings. Moreover, the initial probabilistic
models of the two ACO variants, AS and MMAS are also identical. We
use the initial probabilistic models to sample 10,000 solutions for each
test problem instance, and plot the distribution of averaged normalized
objective values in Fig. 3. The objective values of the sample solutions
are normalized by the mean objective value generated by the classic
ACO algorithm. The normalized objective values are then averaged
across 100 test problem instances. We can observe that the average
objective values generated by SVM-ACO𝜂 is about 40% better than
that of the classic ACO algorithm without ML enhancement. The only
difference between these two algorithms is that SVM-ACO𝜂 sets 𝜂𝑖,𝑗

based on predicted probability 𝑝𝑖,𝑗 , while ACO sets 𝜂𝑖,𝑗 based on a

https://github.com/yuansuny/MLACO
https://github.com/yuansuny/MLACO
https://github.com/yuansuny/MLACO

Computers and Operations Research 143 (2022) 105769Y. Sun et al.

t

t
A
t
i
A
1
i
e

Fig. 3. The distribution of the objective values generated by the ACO, SVM-ACO𝜂 , and SVM-ACO𝜂̂ algorithms in the first iteration when tested on the orienteering problems of
size 100. The objective values are normalized by the mean objective value generated by ACO.
Fig. 4. The convergence curves of the ACO (i.e., AS or MMAS), SVM-ACO𝜏 , SVM-ACO𝜂 and SVM-ACO𝜂̂ algorithms when used to solve the orienteering problems of size 100. The
objective values are normalized by the best objective value found by ACO and are averaged across 100 instances.
i

t
d
i
l
s
o
l
T
b
n
t
p
s
t

t
s
M
t

heuristic rule 𝑠𝑗∕𝑐𝑖,𝑗 . In this sense, our ML prediction is more ‘greedy’
han the heuristic rule. Furthermore, by setting 𝜂𝑖,𝑗 to the product of

our predicted probability and the heuristic rule, the resulted algorithm
SVM-ACO𝜂̂ improves over ACO by 80% in terms of the objective values
generated in the first iteration.

We then compare the ACO algorithms (AS or MMAS) enhanced by
ML prediction against the classic ACO algorithms, when solving the
test problem instances. The number of solutions to be constructed is
set to 10 000𝑛 for each algorithm, where 𝑛 is problem dimensionality.
The population size of AS is set to 100𝑛 and that of MMAS is 𝑛, because
MMAS only uses a single best solution to update the pheromone ma-
trix in each iteration, and thus it benefits more from relatively small
population size and more iterations. The objective values generated by
each algorithm are normalized by the best objective value found by
AS (or MMAS), and are averaged across 100 problem instances and
25 independent runs. The curves of normalized objective value v.s.
number of solutions constructed is shown in Fig. 4. These convergence
curves can show not only the final objective values generated by the
algorithms but also their converging speed. We can observe that the
performances of both AS and MMAS in finding high-quality solutions
are greatly enhanced by ML prediction. Significantly, the solution gen-
erated by SVM-MMAS𝜂̂ at 4% of computational budget is already better
han the final solution produced by MMAS. Furthermore, the enhanced
S and MMAS algorithms are generally able to find a better solution at

he end of a run, except for the SVM-AS𝜂 algorithm that may have an
ssue of premature convergence. We note that the hybridization SVM-
CO𝜂̂ works the best; it improves over the classic ACO by more than
% in terms of the final solution quality generated. This improvement
s larger if less computational budget is allowed. Hence, we will only
mploy the hybridization (𝜂̂) that sets 𝜂𝑖,𝑗 = 𝑝𝑖,𝑗 ⋅𝑠𝑗∕𝑐𝑖,𝑗 in the rest of the
7

paper. j
4.2. Sensitivity to machine learning algorithms

We take the SVM-ACO algorithm and replace SVM by LR and GCN
to see if the performance of our hybrid algorithm is sensitive to the ML
algorithm used in training. We train a separate model with LR and GCN
on our training set. For GCN, we use 20 layers and each hidden layer
has 32 neurons. The learning rate is set to 0.001 and the number of
epochs is 100. The training time for LR is about 27 s and that for GCN
s about 1000 s.

Similar as before, we compare the initial probabilistic models of
he SVM-ACO, LR-ACO, GCN-ACO and ACO algorithms, and plot the
istribution of objective values generated by each probabilistic model
n Fig. 5. We can observe that no matter which one of the three
earning algorithms is used, the ACO enhanced by solution prediction
ignificantly improves over the classic ACO by more than 50% in terms
f the objective values generated in the first iteration. Among the three
earning algorithms, the LR performs the worst and SVM is the best.
his is a bit surprising as the simple linear SVM model performs slightly
etter than the deep GCN model in this context. Note that we have
ot done any fine-tuning for the GCN model, and we suspect that
he performance of GCN may be further improved by tuning hyper-
arameters. However, a thorough evaluation along this line requires
ignificantly more computational resources and is beyond the scope of
his paper.

We also compare the performance of the four algorithms for solving
he test problem instances, and the averaged convergence curves are
hown in Fig. 6. The results show that the ACO algorithms (i.e., AS or
MAS) enhanced by different ML predictions consistently outperform

he classic ACO in finding high-quality solutions. Whilst the initial ob-

ective values found by SVM-ACO, LR-ACO, and GCN-ACO are different,

Computers and Operations Research 143 (2022) 105769Y. Sun et al.
Fig. 5. The distribution of objective values generated by the ACO, SVM-ACO, GCN-ACO, and LR-ACO algorithms in the first iteration when tested on the orienteering problems
of size 100. The objective values are normalized by the mean objective value generated by ACO.
Fig. 6. The convergence curves of the ACO (i.e., AS or MMAS), SVM-ACO, GCN-ACO, and LR-ACO algorithms when used to solve the orienteering problems of size 100. The
objective values are normalized by the best objective value found by ACO and are averaged across 100 instances.
Table 1
The best objective values obtained by the AS, SVM-AS, MMAS and SVM-MMAS
algorithms averaged across 100 problem instances in each problem set. A series of
Wilcoxon signed-rank tests are performed between each pair of algorithms (i.e., AS vs.
SVM-AS and MMAS vs. SVM-MMAS), and the p-values are reported. The statistically
significantly better results are highlighted in bold (p-value < 0.05).

Dataset AS SVM-AS p-value MMAS SVM-MMAS p-value

size 200 3043.22 3102.74 3.02e−12 3068.50 3254.87 3.39e−15
size 300 3674.04 3739.04 3.42e−12 3637.37 3944.72 8.86e−17
size 400 4278.65 4392.26 4.05e−15 4207.71 4665.61 4.01e−18
size 500 4752.65 4866.93 6.10e−14 4612.65 5167.52 1.05e−17

the final solutions generated by these algorithms are of a similar quality
after many iterations of ACO sampling. In the rest of this paper, we will
only use SVM as our ML model.

4.3. Generalization to larger problem instances

We test the generalization of our SVM-ACO algorithm to larger
orienteering problem instances. To do so, we randomly generate larger
problem instances with dimensionality 200, 300, 400 and 500, each
with 100 problem instances, for testing. We then apply the SVM-ACO
model, which is trained on small problem instances of dimensionality
50, to solve each of the larger test problem instance, compared against
the classic ACO. The parameter settings for the two ACO variants, AS
and MMAS are the same as before.

The best objective values obtained by each algorithm averaged
across 100 problem instances for each problem set are presented in
Table 1, and the averaged convergence curves are shown in Fig. 7.
First, we can observe that our ML model trained on small problem
8

instances generalizes very well to larger test problem instances, in
the sense that it consistently boosts the performance of both AS and
MMAS when solving the larger problem instances. Furthermore, this
improvement becomes more significant as the problem dimensionality
increases from 200 to 500. The SVM-MMAS algorithm is clearly the best
performing one among the four algorithms tested. Significantly, SVM-
MMAS improves over MMAS by more than 10% in terms of the best
objective values generated for the problem instances of dimensionality
500.

4.4. Generalization to benchmark problem instances

We evaluate the generalization capability of our SVM-ACO algo-
rithm on a set of benchmark instances used in Chao et al. (1996). Each
instance has 66 vertices, the locations of which form a square shape.
The distance budget is varied from 5 to 130 in increments of 5, resulting
in 26 instances in total. We apply the SVM-ACO algorithm, trained
on randomly generated problem instances, to solve the square-shaped
benchmark problem instances, compared against the classic ACO under
the same parameter settings.

The averaged convergence curves of the algorithms when used to
solve the benchmark problem instances are shown in Fig. 8. The results
show that our ML model trained on randomly generated instances gen-
eralizes well to the square-shaped benchmark instances. In particular,
the SVM-MMAS algorithm is able to find a high-quality solution at the
very early stage of the search process, comparing to MMAS. The mean
and standard deviation of the best objective values generated by each
algorithm across 25 runs for each problem instance are presented in
Table 2. The statistically significantly better results obtained by the

SVM-ACO and ACO algorithms are highlighted in bold, based on the

Computers and Operations Research 143 (2022) 105769Y. Sun et al.
Fig. 7. The convergence curves of the AS, SVM-AS, MMAS and SVM-MMAS algorithms, when used to solve the larger orienteering problem instances. The objective values are
normalized by the best objective value found by AS and are averaged across 100 instances.
Fig. 8. The convergence curves of the AS, SVM-AS, MMAS and SVM-MMAS algorithms,
when used to solve the benchmark problem instances. The objective values are
normalized by the best objective value found by AS and are averaged across 26
instances.

Wilcoxon signed-rank tests with a significance level of 0.05. We can
observe that on easy instances in which the distance budget is small,
both the SVM-ACO and ACO algorithms are able to find the optimal
solutions by the end of a run consistently. However, on hard instances
in which the distance budget is large, the solution quality generated
by SVM-ACO is statistically significantly better than that by the classic
ACO algorithm.

4.5. Generalization to real-world problem instances

We further test the generalization of our SVM-ACO algorithm to
real-world problem instances — tourist trip planning, where the goal is
to plan an itinerary that visits a subset of attractions in a city within a
9

Table 2
The best objective values generated by the AS, SVM-AS, MMAS and SVM-MMAS
algorithms on the benchmark problem instances. The statistically significantly better
results generated by SVM-AS as opposed to AS (and SVM-MMAS as opposed to MMAS)
are highlighted in bold, according to Wilcoxon signed-rank tests with a significance
level of 0.05.

Datasets Budget AS SVM-AS MMAS SVM-MMAS

Mean std Mean std Mean std Mean std

set_66_1_005 5 10.00 0.00 10.00 0.00 10.00 0.00 10.00 0.00
set_66_1_010 10 40.00 0.00 40.00 0.00 40.00 0.00 40.00 0.00
set_66_1_015 15 120.00 0.00 120.00 0.00 120.00 0.00 120.00 0.00
set_66_1_020 20 205.00 0.00 205.00 0.00 205.00 0.00 205.00 0.00
set_66_1_025 25 290.00 0.00 290.00 0.00 290.00 0.00 290.00 0.00
set_66_1_030 30 400.00 0.00 400.00 0.00 400.00 0.00 400.00 0.00
set_66_1_035 35 465.00 0.00 465.00 0.00 465.00 0.00 465.00 0.00
set_66_1_040 40 575.00 0.00 575.00 0.00 575.00 0.00 575.00 0.00
set_66_1_045 45 647.60 2.55 𝟔𝟒𝟗.𝟐𝟎 1.87 648.60 2.29 𝟔𝟓𝟎.𝟎𝟎 0.00
set_66_1_050 50 730.00 0.00 730.00 0.00 729.20 3.12 730.00 0.00
set_66_1_055 55 820.40 2.00 𝟖𝟐𝟑.𝟔𝟎 3.39 823.00 2.50 𝟖𝟐𝟒.𝟖𝟎 1.00
set_66_1_060 60 904.80 6.84 𝟗𝟏𝟎.𝟐𝟎 5.68 914.20 2.36 915.00 0.00
set_66_1_065 65 972.40 5.02 𝟗𝟕𝟔.𝟔𝟎 5.72 980.00 0.00 980.00 0.00
set_66_1_070 70 1055.00 8.42 𝟏𝟎𝟔𝟓.𝟐𝟎 8.72 1069.60 1.38 1070.00 0.00
set_66_1_075 75 1126.00 9.46 𝟏𝟏𝟑𝟖.𝟔𝟎 4.45 1140.00 0.00 1140.00 0.00
set_66_1_080 80 1188.20 10.09 𝟏𝟐𝟎𝟔.𝟖𝟎 8.52 1209.20 6.24 𝟏𝟐𝟏𝟓.𝟎𝟎 0.00
set_66_1_085 85 1242.80 6.47 𝟏𝟐𝟔𝟓.𝟐𝟎 6.84 1264.60 3.20 𝟏𝟐𝟕𝟎.𝟎𝟎 0.00
set_66_1_090 90 1302.60 9.03 𝟏𝟑𝟐𝟐.𝟖𝟎 10.91 1329.80 6.84 𝟏𝟑𝟒𝟎.𝟎𝟎 0.00
set_66_1_095 95 1354.20 10.58 𝟏𝟑𝟕𝟗.𝟒𝟎 10.24 1386.60 6.25 𝟏𝟑𝟗𝟒.𝟖𝟎 1.00
set_66_1_100 100 1405.60 8.33 𝟏𝟒𝟑𝟔.𝟒𝟎 11.23 1447.20 9.36 𝟏𝟒𝟔𝟒.𝟔𝟎 2.00
set_66_1_105 105 1452.00 11.64 𝟏𝟒𝟖𝟒.𝟒𝟎 10.64 1508.20 8.65 𝟏𝟓𝟏𝟗.𝟐𝟎 2.77
set_66_1_110 110 1496.60 10.48 𝟏𝟓𝟐𝟗.𝟔𝟎 9.46 1549.40 7.82 𝟏𝟓𝟔𝟎.𝟎𝟎 0.00
set_66_1_115 115 1544.00 10.80 𝟏𝟓𝟕𝟔.𝟖𝟎 9.45 1583.80 8.07 𝟏𝟓𝟗𝟒.𝟖𝟎 1.00
set_66_1_120 120 1582.40 8.55 𝟏𝟔𝟏𝟕.𝟒𝟎 9.03 1623.00 8.29 𝟏𝟔𝟑𝟒.𝟔𝟎 2.00
set_66_1_125 125 1615.40 6.91 𝟏𝟔𝟓𝟒.𝟔𝟎 9.46 1654.60 5.94 𝟏𝟔𝟕𝟎.𝟎𝟎 0.00
set_66_1_130 130 1649.40 5.83 𝟏𝟔𝟕𝟓.𝟖𝟎 4.72 1675.00 3.82 𝟏𝟔𝟖𝟎.𝟎𝟎 0.00

given distance (or time) budget such that the total collected ‘popularity

score’ is maximized. We use six datasets published in a trajectory-driven

tourist trip planning system (Wang et al., 2018) to test our model. Each

Computers and Operations Research 143 (2022) 105769Y. Sun et al.

2
a
o
a
l
S
2
a

t
f
p
f
M
M
I
t
c

Fig. 9. The convergence curves of the AS, SVM-AS, MMAS and SVM-MMAS algorithms,
when used to solve the real-world problem instances. The objective values are
normalized by the best objective value found by AS and are averaged across six
instances.

Table 3
The best objective values generated by the AS, SVM-AS, MMAS and SVM-MMAS
algorithms on the real-world problem instances. The statistically significantly better
results generated by SVM-AS as opposed to AS (and SVM-MMAS as opposed to MMAS)
are highlighted in bold, according to Wilcoxon signed-rank tests with a significance
level of 0.05.

Datasets Dimension AS SVM-AS MMAS SVM-MMAS

Mean std Mean std Mean std Mean std

Berlin 97 188.39 1.08 191.00 1.70 192.63 0.93 195.46 0.64
Copenhagen 81 227.28 1.90 228.01 2.14 232.21 1.61 235.62 1.79
Istanbul 154 206.11 1.68 208.36 1.79 209.11 1.25 215.12 1.25
London 114 172.88 0.92 172.52 0.70 175.82 0.64 176.02 1.52
Paris 117 153.81 0.76 153.47 2.21 158.83 1.41 159.19 1.78
Prague 78 242.73 1.34 244.52 1.62 248.48 1.26 251.73 1.20

dataset corresponds to a city in Europe. The starting and ending vertex
of a dataset is a hotel randomly chosen from the corresponding city,
and the other vertices are attractions for visiting. The coordinates of
each vertex are its geographic location: latitude and longitude; and
the distance between two vertices is the geographical distance between
them. The popularity score of an attraction is calculated based on how
many people have visited that attraction: 𝑠𝑖 = log2(𝑛𝑖+1), where 𝑛𝑖 is the
number of trajectories that have been to that attraction. The trajectory
data was originally crawled from the Triphobo website by Wang et al.
(2018). The dimensionality of these six datasets varies from 81 to 154.
The total distance budget is set to 50 kilometers for each dataset. We
take the SVM-ACO model trained on synthetic problem instances and
test it on these real-world problem instances.

The average convergence curves of the AS, SVM-AS, MMAS and
SVM-MMAS algorithms when used to solve the real-world problem
instances are shown in Fig. 9. The results show that our ML model
trained on synthetic problem instances generalizes well to real-world
problem instances; the ML model speeds up both AS and MMAS in
finding high-quality solutions for the real-world instances. Overall, the
SVM-MMAS algorithm achieves the best solution quality, and improves
over MMAS by 1.24% on average. The mean and standard deviation of
the best objective values generated by each algorithm across 25 runs
for each problem instance are presented in Table 3. We can see that
both AS and MMAS consistently find an equally good or statistically
significantly better solution when enhanced by our ML prediction.

4.6. Comparison with state-of-the-art algorithms

We take the best-performing algorithm SVM-MMAS and compare
it against three state-of-the-art heuristics, Evolutionary Algorithm for
Orienteering Problem (EA4OP) (Kobeaga et al., 2018), GRASP with
10
Path Relinking (GRASP-PR) (Campos et al., 2014) and 2-Parameter
Iterative Algorithm (2P-IA) (Silberholz and Golden, 2010). These three
state-of-the-art algorithms all use effective local search methods. For
a fair comparison, we also use a local search method to improve the
solutions sampled by SVM-MMAS. Specifically, we use the well-known
2-opt local search method (Lin, 1965) to reduce the path length of the
best solution constructed in each iteration of SVM-MMAS. Candidate
vertices (i.e., those have not been visited) are greedily inserted into the
path until a local optimum is found. Note that the 2-opt local search
method is repeatedly applied when a candidate vertex is inserted into
the path, attempting to reduce the path length.

We compare the performance of our algorithm (denoted as SVM-
MMAS-LS) with the state-of-the-art heuristics on a set of benchmark
problem instances (Fischetti et al., 1998). These instances (generation
3) were generated based on the TSP library, and are available from the
OP library (https://github.com/bcamath-ds/OPLib). For each problem
instance, we run our SVM-MMAS-LS algorithm 10 times, and record the
best solution found and the average runtime used, following (Kobeaga
et al., 2018). The parameters of our algorithm are set as before with
four exceptions:

1. We use a different termination criterion for our SVM-MMAS-LS
algorithm, i.e., if the best solution found cannot be improved for
𝑇ter consecutive iterations, the algorithm is terminated. We will
test two different values for 𝑇ter : 200 and 500.

2. We have tested the use of both the iteration-best solution and the
global-best solution to update the pheromone matrix, and found
that using the global-best solution can generate an optimality
gap that is 44% better than that of using the iteration-best solu-
tion on average. Therefore, we will use the global-best solution
to update the pheromone matrix.

3. We have tested three different population sizes {50, 100, 𝑛} and
found that using a larger population size can generate a slightly
smaller optimality gap but significantly increases the runtime.
Hence, we will set the population size to 50.

4. We use the SVM model (primal formulation) implemented in
the LIBLINEAR library, which is faster than that of the LIBSVM
library (dual formulation) in prediction. Furthermore, we reduce
the sample size 𝑚 to 10𝑛, to gain computational efficiency.

The results for the medium-sized instances of which the number of
vertices ranges from 48 to 400 are presented in Table 4. Note that the
results of EA4OP, GRASP-PR and 2P-IA are taken from Kobeaga et al.
(2018), which are generated on a workstation with Intel(R) Xeon(R)
E5-2609 v3 @ 1.90 GHz Processor and 4 GB RAM, while the results of
our SVM-MMAS-LS algorithm are obtained on a server with Xeon-Gold-
6150 @ 2.70 GHz Processor and 4 GB RAM. Hence, the runtimes of the
algorithms cannot be directly compared. In terms of solution quality
found, we can observe that our SVM-MMAS-LS algorithm with 𝑇ter =
00 is already competitive with the three state-of-the-art heuristics. On
verage, SVM-MMAS-LS achieves a smaller optimality gap than the
ther three algorithms. When 𝑇ter is increased from 200 to 500, the
verage optimality gap can be further reduced, but at an expense of
onger runtime. For larger problem instances (with |𝑉 | > 400), our
VM-MMAS-LS algorithm can generate better solution quality than the
P-IA and GRASP-PR algorithms but does not outperform the EA4OP
lgorithm in general (see Appendix A.5 for the detailed results).

Finally, we would like to remark that our primary aim is not to fine-
une our proposed method to outperform the state-of-the-art algorithms
or solving the orienteering problem. Instead, our aim is to boost the
erformance of ACO in general via solution prediction and ML. There-
ore, our experiments have mainly focused on showing whether the
L-enhanced ACO algorithm outperforms the classic ACO. In fact, our
L-enhanced ACO is not confined to solving the orienteering problem.

n Appendix B, we adapt our ML-enhanced ACO algorithm to solve
he maximum weighted clique problem and show that it is competitive
ompared to the state-of-the-art algorithms.

https://github.com/bcamath-ds/OPLib

Computers and Operations Research 143 (2022) 105769Y. Sun et al.
Table 4
The comparison between our SVM-MMAS-LS algorithm and three state-of-the-art heuristics on the medium-sized benchmark problem instances. The column ‘Opt’ presents the
optimal objective value. For each algorithm, the best objective value found, optimality gap (%) and the average runtime (in second) are presented. The best optimality gap is
highlighted in bold. The last row denotes the number of instances on which an algorithm achieves the best optimality gap. Note that the results for 2P-IA, GRASP-PR and EA4OP
are taken from Kobeaga et al. (2018), and thus the runtimes are not comparable.

Instance Opt 2P-IA GRASP-PR EA4OP SVM-MMAS-LS (200) SVM-MMAS-LS (500)

Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time

att48 1 049 1 049 𝟎.𝟎𝟎 0.13 1 049 0.00 0.18 1 049 𝟎.𝟎𝟎 0.26 1 049 0.00 0.22 1 049 0.00 0.39
gr48 1 480 1 480 𝟎.𝟎𝟎 0.07 1 480 0.00 0.20 1 480 𝟎.𝟎𝟎 0.13 1 480 0.00 0.21 1 480 0.00 0.43
hk48 1 764 1 764 𝟎.𝟎𝟎 0.09 1 764 0.00 0.14 1 764 𝟎.𝟎𝟎 0.22 1 764 0.00 0.23 1 764 0.00 0.36
eil51 1 399 1 399 𝟎.𝟎𝟎 0.12 1 399 0.00 0.17 1 398 0.07 0.22 1 399 0.00 0.25 1 399 0.00 0.50
berlin52 1 036 1 036 𝟎.𝟎𝟎 0.19 1 036 0.00 0.30 1 034 0.19 0.64 1 036 0.00 0.20 1 036 0.00 0.39
brazil58 1 702 1 702 𝟎.𝟎𝟎 0.13 1 702 0.00 0.33 1 702 𝟎.𝟎𝟎 0.71 1 702 0.00 0.29 1 702 0.00 0.48
st70 2 108 2 108 𝟎.𝟎𝟎 0.24 2 108 0.00 0.37 2 108 𝟎.𝟎𝟎 0.31 2 108 0.00 0.36 2 108 0.00 0.79
eil76 2 467 2 461 0.24 0.30 2 462 0.20 0.44 2 467 𝟎.𝟎𝟎 0.36 2 462 0.20 0.51 2 467 0.00 1.05
pr76 2 430 2 430 𝟎.𝟎𝟎 0.26 2 430 0.00 0.56 2 430 𝟎.𝟎𝟎 0.57 2 430 0.00 0.48 2 430 0.00 1.12
gr96 3 170 3 170 𝟎.𝟎𝟎 0.39 3 153 0.54 1.07 3 166 0.13 1.41 3 170 0.00 0.93 3 170 0.00 1.49
rat99 2 908 2 896 0.41 0.47 2 881 0.93 0.80 2 886 0.76 0.78 2 870 1.31 0.54 2 908 0.00 1.32
kroA100 3 211 3 211 𝟎.𝟎𝟎 0.30 3 211 0.00 1.16 3 180 0.97 0.38 3 206 0.16 0.76 3 211 0.00 1.69
kroB100 2 804 2 804 𝟎.𝟎𝟎 0.46 2 804 0.00 1.34 2 785 0.68 0.51 2 804 0.00 0.64 2 804 0.00 1.29
kroC100 3 155 3 155 𝟎.𝟎𝟎 0.38 3 149 0.19 0.86 3 155 𝟎.𝟎𝟎 0.44 3 149 0.19 0.70 3 140 0.48 1.20
kroD100 3 167 3 123 1.39 0.65 3 167 0.00 1.18 3 141 0.82 0.58 3 147 0.63 0.58 3 151 0.51 1.55
kroE100 3 049 3 027 0.72 0.56 3 049 0.00 1.48 3 049 𝟎.𝟎𝟎 0.47 3 049 0.00 0.58 3 049 0.00 1.15
rd100 2 926 2 924 0.07 0.62 2 924 0.07 0.90 2 923 0.10 0.48 2 926 0.00 0.71 2 926 0.00 1.85
eil101 3 345 3 333 0.36 0.46 3 322 0.69 0.76 3 345 𝟎.𝟎𝟎 0.56 3 335 0.30 0.92 3 322 0.69 2.02
lin105 2 986 2 986 𝟎.𝟎𝟎 0.54 2 986 0.00 1.89 2 973 0.44 2.09 2 986 0.00 0.68 2 986 0.00 1.92
pr107 1 877 1 877 𝟎.𝟎𝟎 0.29 1 877 0.00 1.15 1 802 4.00 0.82 1 875 0.11 0.46 1 877 0.00 0.76
gr120 3 779 3 736 1.14 0.96 3 745 0.90 1.15 3 748 0.82 1.36 3 687 2.43 1.23 3 765 0.37 3.07
pr124 3 557 3 517 1.12 0.62 3 549 0.22 2.41 3 455 2.87 0.88 3 549 0.22 0.98 3 549 0.22 1.63
bier127 2 365 2 356 0.38 1.08 2 332 1.40 2.07 2 361 𝟎.𝟏𝟕 2.62 2 336 1.23 1.57 2 347 0.76 3.62
pr136 4 390 4 390 𝟎.𝟎𝟎 0.93 4 380 0.23 2.56 4 390 𝟎.𝟎𝟎 1.13 4 312 1.78 1.31 4 299 2.07 2.85
gr137 3 954 3 928 0.66 1.13 3 926 0.71 1.89 3 954 𝟎.𝟎𝟎 1.88 3 932 0.56 1.80 3 934 0.51 2.64
pr144 3 745 3 633 2.99 0.77 3 745 0.00 3.36 3 700 1.20 2.41 3 745 0.00 0.96 3 745 0.00 2.11
kroA150 5 039 5 037 𝟎.𝟎𝟒 1.26 5 018 0.42 3.06 5 019 0.40 1.07 5 011 0.56 1.56 5 034 0.10 3.71
kroB150 5 314 5 267 0.88 1.31 5 272 0.79 2.31 5 314 𝟎.𝟎𝟎 1.04 5 177 2.58 1.68 5 253 1.15 4.12
pr152 3 905 3 557 8.91 0.80 3 905 0.00 4.07 3 902 0.08 3.62 3 905 0.00 1.37 3 905 0.00 2.85
u159 5 272 5 272 𝟎.𝟎𝟎 1.33 5 272 0.00 4.46 5 272 𝟎.𝟎𝟎 0.94 5 214 1.10 1.48 5 218 1.02 3.97
rat195 6 195 6 174 𝟎.𝟑𝟒 2.22 6 086 1.76 3.06 6 139 0.90 2.00 6 127 1.10 3.00 6 125 1.13 6.46
d198 6 320 5 985 5.30 1.86 6 162 2.50 5.86 6 290 𝟎.𝟒𝟕 7.14 6 258 0.98 2.71 6 212 1.71 5.46
kroA200 6 123 6 048 1.22 2.73 6 084 0.64 4.64 6 114 𝟎.𝟏𝟓 1.72 5 971 2.48 2.39 6 028 1.55 7.14
kroB200 6 266 6 251 𝟎.𝟐𝟒 2.79 6 190 1.21 5.46 6 213 0.85 1.77 6 163 1.64 3.17 6 226 0.64 4.78
gr202 8 616 8 111 5.86 2.05 8 419 2.29 9.12 8 605 𝟎.𝟏𝟑 10.45 8 464 1.76 3.79 8 542 0.86 9.68
ts225 7 575 7 149 5.62 1.47 7 510 0.86 6.15 7 575 𝟎.𝟎𝟎 1.14 7 486 1.17 3.12 7 575 0.00 9.80
tsp225 7 740 7 353 5.00 2.38 7 565 2.26 5.04 7 488 3.26 2.58 7 607 1.72 3.74 7 681 0.76 11.50
pr226 6 993 6 652 4.88 1.97 6 964 0.41 15.50 6 908 1.22 8.01 6 950 0.61 3.37 6 937 0.80 6.10
gr229 6 328 6 190 2.18 4.42 6 205 1.94 9.03 6 297 𝟎.𝟒𝟗 11.65 6 135 3.05 5.98 6 197 2.07 17.40
gil262 9 246 8 915 3.58 5.68 8 922 3.50 6.07 9 094 1.64 3.94 9 090 1.69 7.57 9 116 1.41 22.60
pr264 8 137 7 820 3.90 3.98 7 959 2.19 17.88 8 068 0.85 3.62 8 118 0.23 4.21 8 086 0.63 7.44
a280 9 774 8 719 10.79 4.53 9 426 3.56 9.42 8 684 11.15 3.22 9 609 1.69 4.83 9 587 1.91 13.55
pr299 10 343 10 305 𝟎.𝟑𝟕 6.07 10 033 3.00 19.61 9 959 3.71 3.95 10 227 1.12 5.40 10 254 0.86 16.01
lin318 10 368 9 909 4.43 7.57 9 758 5.88 12.18 10 273 𝟎.𝟗𝟐 6.33 10 155 2.05 9.05 10 271 0.94 21.95
rd400 13 223 12 828 2.99 14.49 12 678 4.12 16.46 13 088 𝟏.𝟎𝟐 7.74 12 552 5.07 12.15 12 848 2.84 53.39

Average 4 724 4 601 1.69 1.80 4 646 0.96 4.18 4 661 0.90 2.31 4 661 0.88 2.19 4 683 0.58 5.90
best – – 20 – – 19 – – 22 – – 18 – – 24 –
5. Conclusion

We have proposed a new meta-heuristic called ML-ACO that inte-
grates machine learning (ML) with ant colony optimization (ACO) to
solve the orienteering problem. Our ML model trained on optimally-
solved problem instances, is able to predict which edges in the graph
of a test problem instance are more likely to be part of the opti-
mal route. We incorporated the ML predictions into the probabilistic
model of ACO to bias its sampling towards using the predicted ‘high-
quality’ edges more often when constructing solutions. This in turn
significantly boosted the performance of ACO in finding high-quality
solutions for a test problem instance. We tested three different classifi-
cation algorithms, and the experimental results showed that all of the
ML-enhanced ACO variants significantly improved the classic ACO in
terms of both speed of convergence and quality of the final solution.
Of the three ML models, the SVM based predictions produced the best
results for this application. The best results were obtained by using
the prediction to modify the heuristic weights rather than just for the
initial pheromone matrix. Importantly, our ML model trained on small
11
synthetic problem instances generalized very well to large synthetic and
real-world problem instances.

We see great potential of the integration between ML (more specifi-
cally solution prediction) and meta-heuristics, and a lot of opportunities
for future work. First, there is a large family of meta-heuristics, that
can potentially be improved by solution prediction. Second, it would
be interesting to see if this integrated technique also works on other
combinatorial optimization problems as well as continuous, dynamic
or multi-objective optimization problems. In particular, we expect this
integrated technique would be more effective in solving a dynamic
problem where the optimal solution changes over time. Based on the
results shown in this paper, solution prediction is very greedy, and
therefore can potentially adapt quickly to any changes occurring in
a problem. Third, there is a large number of ML algorithms that can
be used for solution prediction. Meta-heuristics will certainly benefit
more from this type of hybridization, if we can further improve the
accuracy of solution prediction. This paper shows that SVM, one of
the simpler ML models, is already highly effective. However, given the
large number of advanced ML methods developed in recent years, there

Computers and Operations Research 143 (2022) 105769Y. Sun et al.

e
r
b
c

𝑘

1
1
1

1
1
1

1
1

1

1

T
W
b
o
e
t
e
i
c

may be others that are even more effective in this context of boosting
meta-heuristics.

CRediT authorship contribution statement

Yuan Sun: Conceptualization, Methodology, Software, Formal anal-
ysis, Investigation, Writing – original draft. Sheng Wang: Software,
Investigation, Writing – original draft. Yunzhuang Shen: Software, In-
vestigation, Writing – original draft. Xiaodong Li: Methodology, Writ-
ing – original draft, Funding acquisition. Andreas T. Ernst: Method-
ology, Writing – original draft, Funding acquisition. Michael Kirley:
Methodology, Writing – original draft.

Acknowledgment

This work was supported by an ARC (Australian Research Council)
Discovery Grant (DP180101170).

Appendix A. Supplementary methodology and experimental re-
sults

A.1. A random sampling method for the orienteering problem

Consider an orienteering problem instance 𝐺(𝑉 ,𝐸, 𝑆, 𝐶) with a
given time budget 𝑇max. Without loss of generality, we assume 𝑣1 is
the starting vertex and 𝑣𝑛 is the ending vertex. The main steps of our
random sampling method to generate one feasible solution (route) are:

1. Initialize a route with the starting vertex 𝑣1;
2. Generate a random permutation of the candidate vertices

{𝑣2,… , 𝑣𝑛−1} that can be visited;
3. Consider the vertices in the generated permutation one by one,

and add the vertices to the sample route which does not violate
the time budget constraint;

4. Add the ending vertex 𝑣𝑛 to the sample route.

The pseudocode of the random sampling method is presented in Algo-
rithm 1. It is obvious that the time complexity of generating one sample
route by using this method is (𝑛), where 𝑛 is the number of vertices in
a problem instance. Hence, the total time complexity of generating 𝑚
sample routes is (𝑚𝑛). Furthermore, the sample size 𝑚 should be larger
than 𝑛; otherwise there will be some edges that are never sampled. This
is because the number of edges in the directed complete graph is 𝑛(𝑛−1),
and the total number of edges in 𝑚 sample routes is no more than 𝑚𝑛.
Therefore, each edge is expected to be sampled no more than 𝑚∕(𝑛−1)
times.

A.2. An efficient method for computing the statistical measures

In the main paper, we used a binary string 𝒙 to represent a sample
solution (route), where 𝑥𝑖,𝑗 = 1 if the edge 𝑒𝑖,𝑗 is in the route; otherwise
𝑥𝑖,𝑗 = 0. We have shown that directly computing the ranking-based
measure and correlation-based measure based on the binary string
representation 𝐱 costs (𝑚𝑛2). Here, we adapt the method proposed
in Sun et al. (2021b) to efficiently compute the two statistical measures
based on set representation 𝑃 , which only stores the edges appearing
in the corresponding sample route.

Let {𝑃 1,… , 𝑃𝑚} be the set representation of the 𝑚 randomly gen-
rated solutions; {𝒙1,… ,𝒙𝑚} be the corresponding binary string rep-
esentation; and {𝑦1,… , 𝑦𝑚} be their objective values. Because 𝑥𝑘𝑖,𝑗 are
inary variables, we can simplify the calculation of Pearson correlation
oefficient by using the following two equalities:
𝑚
∑

(𝑥𝑘𝑖,𝑗 − 𝑥̄𝑖,𝑗)2 = 𝑥̄𝑖,𝑗 (1 − 𝑥̄𝑖,𝑗)𝑚, (22)
12

=1
Algorithm 1 Random Sampling Method
Require: vertex set 𝑉 , vertex score set 𝑆, edge cost set 𝐶, time budget

𝑇max, number of samples to generate 𝑚.
1: for 𝑘 from 1 to 𝑚 do
2: Initialize the route 𝑃 𝑘 with the starting vertex 𝑣1;
3: Initialize the object value 𝑦𝑘 ← 𝑆[𝑣1];
4: Initialize the current vertex 𝑣𝑐 ← 𝑣1;
5: Initialize the time used so far 𝑡𝑐 ← 0;
6: Generate a random permutation of {𝑣2,… , 𝑣𝑛−1};
7: for 𝑣𝑗 in the generated random permutation do
8: if 𝑡𝑐 + 𝐶[𝑣𝑐 , 𝑣𝑗] + 𝐶[𝑣𝑗 , 𝑣𝑛] ≤ 𝑇max then
9: Add 𝑣𝑗 to the route 𝑃𝑘;
0: Update 𝑦𝑘 ← 𝑦𝑘 + 𝑆[𝑣𝑗];
1: Update 𝑡𝑐 ← 𝑡𝑐 + 𝐶[𝑣𝑐 , 𝑣𝑗];
2: Update 𝑣𝑐 ← 𝑣𝑗 ;
3: Add 𝑣𝑛 to the route 𝑃𝑘;
4: Update 𝑦𝑘 ← 𝑦𝑘 + 𝑆[𝑣𝑛];
5: return {𝑃 1,… , 𝑃𝑚} and {𝑦1,… , 𝑦𝑚}.

Algorithm 2 Computing Statistical Measures
Require: samples P, objective values 𝑌 , number of samples 𝑚, number

of vertices 𝑛, and edge set 𝐸.
1: Sort the samples in P based on objective value 𝑌 ; and use 𝑟𝑘 to

denote the ranking of 𝑘th sample 𝑃 𝑘;
2: Compute mean objective value: 𝑦̄ ←

∑𝑚
𝑘=1 𝑦

𝑘∕𝑚;
3: Compute objective difference: 𝑦𝑑 ←

∑𝑚
𝑘=1(𝑦

𝑘 − 𝑦̄);
4: Compute objective variance: 𝜎𝑦 ←

∑𝑚
𝑘=1(𝑦

𝑘 − 𝑦̄)2;
5: Initialize 𝑓𝑟, 𝑥̄𝑖,𝑗 and 𝑠1𝑖,𝑗 to 0, for each 𝑒𝑖,𝑗 ∈ 𝐸;
6: for 𝑘 from 1 to 𝑚 do
7: for 𝑖𝑑𝑥 from 1 to |𝑃 𝑘

| − 1 do
8: 𝑖 ← 𝑃 𝑘[𝑖𝑑𝑥], 𝑗 ← 𝑃 𝑘[𝑖𝑑𝑥 + 1];
9: 𝑓𝑟(𝑒𝑖,𝑗) ← 𝑓𝑟(𝑒𝑖,𝑗) + 1∕𝑟𝑘;
0: 𝑥̄𝑖,𝑗 ← 𝑥̄𝑖,𝑗 + 1∕𝑚;
1: 𝑠1𝑖,𝑗 ← 𝑠1𝑖,𝑗 + (𝑦𝑘 − 𝑦̄);

2: for 𝑖 from 1 to 𝑛 do
13: for 𝑗 from 1 to 𝑛 and 𝑗 ≠ 𝑖 do
4: 𝜎𝑐𝑖,𝑗 ← (1 − 𝑥̄𝑖,𝑗)𝑠1𝑖,𝑗 − 𝑥̄𝑖,𝑗 (𝑦𝑑 − 𝑠1𝑖,𝑗);

15: 𝜎𝑥𝑖,𝑗 ← 𝑥̄𝑖,𝑗 (1 − 𝑥̄𝑖,𝑗)𝑚;
16: 𝑓𝑐 (𝑒𝑖,𝑗) ← 𝜎𝑐𝑖,𝑗 ∕

√𝜎𝑥𝑖,𝑗 𝜎𝑦;

17: return 𝑓𝑟 and 𝑓𝑐 .

𝑚
∑

𝑘=1
(𝑥𝑘𝑖,𝑗 − 𝑥̄𝑖,𝑗)(𝑦𝑘 − 𝑦̄) = (1 − 𝑥̄𝑖,𝑗)𝑠1𝑖,𝑗 − 𝑥̄𝑖,𝑗𝑠

0
𝑖,𝑗 , (23)

where 𝑥̄𝑖,𝑗 =
∑𝑚

𝑘=1 𝑥
𝑘
𝑖,𝑗∕𝑚, 𝑦̄ =

∑𝑚
𝑘=1 𝑦

𝑘∕𝑚 and

𝑠1𝑖,𝑗 =
∑

1≤𝑘≤𝑚
𝑥𝑘𝑖,𝑗=1

(𝑦𝑘 − 𝑦̄); and 𝑠0𝑖,𝑗 =
∑

1≤𝑘≤𝑚
𝑥𝑘𝑖,𝑗=0

(𝑦𝑘 − 𝑦̄). (24)

he proof of these two equalities can be found in Sun et al. (2021b).
e then are able to compute the two statistical measures in (𝑚𝑛+ 𝑛2)

y using Algorithm 2. Computing our ranking-based measure 𝑓𝑟 based
n the set representation is straightforward, i.e., scanning through the
dges in each sample route 𝑃 to accumulate the rankings. To compute
he correlation-based measure, we first iterate through the edges in
ach sample route 𝑃 to accumulate 𝑥̄𝑖,𝑗 and 𝑠1𝑖,𝑗 , i.e., line 6 to 11
n Algorithm 2. Our correlation-based measure 𝑓𝑐 can then be easily
omputed based on 𝑥̄𝑖,𝑗 and 𝑠1𝑖,𝑗 (line 12 to 16 in Algorithm 2).

Computers and Operations Research 143 (2022) 105769Y. Sun et al.

l
a
n
2
𝑏

m

1

t
a
t

A

A.3. A brief introduction of the machine learning algorithms used

Support Vector Machine (SVM): Given a training set S = {(𝒇 𝑖, 𝑙𝑖) ∣
𝑖 = 1,… , 𝑛𝑡}, the aim of SVM is to find a decision boundary (𝒘𝑇 𝒇 +
𝑏 = 0) in the feature space to maximize the so-called geometric
margin, defined as the smallest distance from a training point to the
decision boundary (Boser et al., 1992; Cortes and Vapnik, 1995). We
use an L2-regularized linear SVM model, that finds the optimal decision
boundary by solving the following quadratic programming with linear
constraints:

min
𝒘,𝑏,𝝃

1
2
𝒘𝑇𝒘 + 𝑟+

∑

𝑙𝑖=1
𝜉𝑖 + 𝑟−

∑

𝑙𝑖=−1
𝜉𝑖, (25)

𝑠.𝑡. 𝑙𝑖
(

𝒘𝑇 𝒇 𝑖 + 𝑏
)

≥ 1 − 𝜉𝑖, 𝑖 = 1,… , 𝑛𝑡, (26)

𝜉𝑖 ≥ 0, 𝑖 = 1,… , 𝑛𝑡, (27)

where 𝑟+ > 0 and 𝑟− > 0 are the regularization parameters for positive
and negative training points; and 𝜉𝑖, 𝑖 = 1,… , 𝑛𝑡 are slack variables.

Logistic Regression (LR) uses a loss function derived from the
ogistic function 𝑔(𝑥) = 1∕(1 + 𝑒−𝑥), whose output is in between [0, 1]
nd can be interpreted as probability. LR aims to separate positive and
egative training points by maximum likelihood estimation (Bishop,
006). We use an L2-regularized LR model that fits its parameters (𝒘,
) by solving the following optimization problem:

in
𝒘,𝑏

1
2
𝒘𝑇𝒘+ 𝑟+

∑

𝑙𝑖=1
log2(1 + 𝑒−𝒘

𝑇 𝒇 𝑖−𝑏) + 𝑟−
∑

𝑙𝑖=−1
log2(1 + 𝑒𝒘

𝑇 𝒇 𝑖+𝑏). (28)

Graph Convolutional Network (GCN) is a convolutional neural
network that makes use of graph structure when classifying vertices
in a graph (Kipf and Welling, 2017). Consider a simple GCN model
with only two layers: the input layer contains feature vectors 𝒇 and the
output layer is a predicted scalar 𝑧 for a vertex in a graph. To compute
𝑧𝑖 for vertex 𝑣𝑖 in a graph, GCN aggregates its feature vector 𝒇 𝑖 with
that of its neighbors 𝑖:

𝑧𝑖 = 𝒘0𝒇 𝑖 +𝒘1
∑

𝑣𝑗∈𝑖

√

𝑑𝑖𝑑𝑗𝒇 𝑗 , (29)

where 𝑑𝑖 and 𝑑𝑗 are the degrees of vertex 𝑣𝑖 and 𝑣𝑗 ; 𝒘0 and 𝒘1 are
the weights to be optimized. This two-layer GCN model is a simple
linear classifier, which is not expected to work well in practice. Thus,
we usually use multiple hidden layers between the input and output
layers, and each hidden layer can have multiple ‘neurons’. A hidden
layer basically takes the output of its previous layer as input, and
performs a linear transformation of its input. The intermediate output
of the linear transformation is then filtered by an activation function
to make GCN a non-linear classifier. In our experiments, the GCN
model consists of 20 layers and each hidden layer has 32 neurons. The
activation function used is the ReLU function (Nair and Hinton, 2010),
defined as ReLU(𝑥) = max(0, 𝑥). The weights (𝒘) of GCN are optimized
via stochastic gradient descent with L2-regularized cross-entropy loss
function (Kipf and Welling, 2017). In the case of binary classification,
the cross-entropy loss function is identical to the loss function of the
LR algorithm:

min
𝒘

1
2
𝒘𝑇𝒘 + 𝑟+

∑

𝑙𝑖=1
log2(1 + 𝑒−𝑧𝑖) + 𝑟−

∑

𝑙𝑖=−1
log2(1 + 𝑒𝑧𝑖), (30)

where 𝒘 is a vector of all GCN’s weights to be optimized, and 𝑧𝑖 is
the output (prediction) of GCN for the 𝑖th training point. Because our
training points are edges instead of vertices in the graphs of the orien-
teering problem instances, the GCN model cannot be directly applied
to make predictions for edges in the graphs. To tackle this, we transfer
the original graph (𝐺) to its line graph (𝐺̄) such that the edges in 𝐺
are now vertices in 𝐺̄ and the neighboring edges (i.e., edges sharing
a common vertex) in 𝐺 are now neighboring vertices (i.e., vertices
sharing a common edge) in 𝐺̄. We then can apply the GCN model on
the line graph 𝐺̄ to make predictions for the edges in the original graph
𝐺.
13
Table 5
The mean and standard deviation of the best objective values generated by the AS
and MMAS algorithms with different parameter settings on the test instances. The
default parameter values are in italics. The p-values are generated by comparing each
parameter value to the default, and the ones with statistical significance (< 0.05) are
highlighted in bold.

Parameter Values Mean Std P-Value

𝜌 (AS)
0.01 1831.06 661.47 2.11e−04
0.05 1839.06 671.25 –
0.1 1838.27 673.21 6.22e−03

𝑄 (AS)
10 1808.77 656.42 8.33e−18
100 1839.06 671.25 –
200 1841.58 674.85 4.91e−01

𝑇pts (MMAS)
50 1883.69 698.39 6.11e−03
100 1886.90 697.88 –
200 1888.32 704.85 2.49e−01

A.4. Parameter setting for AS and MMAS

The default settings for 𝛼, 𝛽, 𝛿, 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 are selected based on
the original AS and MMAS models (Dorigo et al., 1996; Stützle and
Hoos, 2000). Here we tune the parameters 𝜌, 𝑄 and 𝑇pts using the
00 randomly generated instances (with |𝑉 | = 100). We test three

different values for each parameter and select the value that generates
the best solution quality as the default (see Table 5 for the results).
In the case that there is no statistically significant difference between
the parameter values, e.g., 𝑄 = 100 and 𝑄 = 200, we simply select
he smaller value as the default. The stopping criterion, population size
nd global-best vs iteration-best for updating the pheromone matrix are
uned in Section 4.6.

.5. Experimental results for the large benchmark problem instances

We further compare our SVM-MMAS-LS algorithm (with 𝑇ter = 200)
to the three state-of-the-art heuristics on a set of large benchmark prob-
lem instances (generation 3) with |𝑉 | > 400 (Fischetti et al., 1998), and
the results are shown in Table 6. Note again that the results for EA4OP,
GRASP-PR and 2P-IA are taken from Kobeaga et al. (2018). Further,
there is a cutoff (18 000 s) imposed for the 2P-IA, GRASP-PR, and
EA4OP algorithms, while our SVM-MMAS-LS algorithm is terminated
only when the best solution found cannot be improved for 𝑇ter = 200
consecutive iterations. Hence, the runtimes of the algorithms cannot be
directly compared, and we will mainly focus on the comparison of the
solution quality generated. Overall, the EA4OP algorithm performs the
best on these instances, while our SVM-MMAS-LS algorithm generally
finds better solutions than the GRASP-PR and 2P-IA algorithms. It is
noteworthy that our SVM-MMAS-LS algorithm is still able to find better
solutions than EA4OP for seven instances, even though our algorithm
has not been fine-tuned for these large problem instances.

Appendix B. Adapting ML-ACO to solve the maximum weighted
clique problem

As our ML-ACO algorithm is a generic approach, we apply it to solve
another combinatorial optimization problem, the maximum weighted
clique problem (MWCP). The MWCP is a variant of the maximum
clique problem, which is a fundamental problem in graph theory with
a wide range of real-world applications (Wu and Hao, 2015; Malladi
et al., 2017; Letchford et al., 2020; Blum et al., 2021). Solving the
MWCP is NP-hard, and a large number of solution methods have been
developed for this problem recently. These include exact solvers such as
branch-and-bound algorithms (Jiang et al., 2017, 2018; Li et al., 2018a;
San Segundo et al., 2019) and local search methods (Wang et al., 2016;
Cai and Lin, 2016; Zhou et al., 2017; Nogueira and Pinheiro, 2018;
Wang et al., 2020).

Computers and Operations Research 143 (2022) 105769Y. Sun et al.

a

Table 6
The comparison between our SVM-MMAS-LS algorithm and three state-of-the-art heuristics on the large benchmark problem instances. The column ‘Overall best’ denotes the best
objective value found by the four algorithms. For each algorithm, the best objective value found, the gap (%) to the overall best solution and the average runtime (in second)
are presented. The best gap is highlighted in bold. Note that the results for 2P-IA, GRASP-PR and EA4OP are taken from Kobeaga et al. (2018), and thus the runtimes are not
comparable.

Instance Overall 2P-IA GRASP-PR EA4OP SVM-MMAS-LS

Best Best Gap Time Best Gap Time Best Gap Time Best Gap Time

fl417 14 186 12 792 9.83 12.49 13 709 3.36 73.99 14 186 0.00 12.45 14 010 1.24 11.95
gr431 10 817 10 735 0.76 17.18 10 500 2.93 103.88 10 817 0.00 54.50 10 727 0.83 32.15
pr439 15 097 13 006 13.85 15.35 14 694 2.67 153.19 15 097 0.00 10.96 14 952 0.96 28.27
pcb442 14 565 14 446 0.82 11.57 14 206 2.46 31.56 14 522 0.30 6.58 14 565 𝟎.𝟎𝟎 19.39
d493 24 981 21 458 14.10 15.15 23 362 6.48 197.43 24 981 0.00 19.18 24 505 1.91 33.56
att532 15 342 15 178 1.07 23.23 14 573 5.01 75.56 15 342 0.00 22.75 15 187 1.01 52.79
ali535 9 328 8 884 4.76 26.04 8 672 7.03 162.88 9 328 0.00 94.09 9 261 0.72 47.28
pa561 14 034 13 662 2.65 35.44 13 271 5.44 36.99 14 034 0.00 21.35 13 778 1.82 34.14
u574 19 691 19 368 1.64 34.05 18 747 4.79 44.60 19 691 0.00 19.77 19 216 2.41 46.40
rat575 19 879 19 669 1.06 33.87 19 007 4.39 47.82 19 879 0.00 18.03 19 251 3.16 38.61
p654 24 249 22 303 8.03 30.94 24 221 0.12 284.87 24 130 0.49 18.54 24 249 𝟎.𝟎𝟎 24.00
d657 23 792 22 401 5.85 32.94 21 893 7.98 69.62 23 772 0.08 21.89 23 792 𝟎.𝟎𝟎 78.17
gr666 16 902 15 561 7.93 46.77 15 545 8.03 227.61 16 902 0.00 143.87 16 387 3.05 93.76
u724 27 932 27 072 3.08 58.19 26 665 4.54 150.49 27 932 0.00 29.26 27 294 2.28 94.25
rat783 26 870 26 870 𝟎.𝟎𝟎 80.85 25 591 4.76 153.06 26 797 0.27 30.64 26 269 2.24 80.96
dsj1000 30 943 30 043 2.91 183.75 28 822 6.85 781.25 30 943 0.00 79.18 30 063 2.84 149.73
pr1002 38 762 37 244 3.92 115.38 35 808 7.62 485.46 38 762 0.00 47.30 37 354 3.63 184.91
u1060 36 570 35 649 2.52 179.48 34 873 4.64 689.68 36 570 0.00 75.88 35 816 2.06 204.28
vm1084 37 508 36 170 3.57 167.56 36 121 3.70 813.15 37 508 0.00 54.21 36 488 2.72 394.14
pcb1173 40 069 38 284 4.45 301.94 37 506 6.40 477.29 40 069 0.00 66.16 38 749 3.29 240.44
d1291 40 706 36 419 10.53 212.23 36 063 11.41 1 288.60 38 132 6.32 299.87 40 706 𝟎.𝟎𝟎 423.03
rl1304 41 214 37 562 8.86 362.55 37 859 8.14 1 000.74 41 214 0.00 81.11 40 261 2.31 647.91
rl1323 46 641 43 029 7.74 323.11 42 990 7.83 904.51 46 641 0.00 93.53 45 395 2.67 336.84
nrw1379 43 972 42 412 3.55 418.50 40 170 8.65 870.77 43 972 0.00 124.75 40 696 7.45 545.26
fl1400 57 226 57 131 0.17 471.99 55 269 3.42 7 075.68 57 226 0.00 599.81 57 140 0.15 1 046.48
u1432 46 657 45 806 1.82 305.25 45 084 3.37 1 291.16 46 657 0.00 138.02 45 507 2.46 551.09
fl1577 45 692 44 188 3.29 428.11 44 062 3.57 9 751.32 45 692 0.00 295.62 44 661 2.26 772.68
d1655 59 092 55 771 5.62 600.91 54 121 8.41 3 487.68 58 728 0.62 674.25 59 092 𝟎.𝟎𝟎 787.98
vm1748 70 958 67 785 4.47 1 280.00 68 976 2.79 6 251.95 70 958 0.00 225.29 69 209 2.46 1 676.85
u1817 63 639 60 751 4.54 738.77 59 783 6.06 4 171.11 63 639 0.00 1 302.35 61 813 2.87 1 382.51
rl1889 68 422 64 660 5.50 1 260.33 62 538 8.60 5 535.04 68 422 0.00 244.97 66 131 3.35 1 556.93
d2103 80 940 78 084 3.53 1 585.02 73 034 9.77 18 000.00 77 333 4.46 1 168.90 80 940 𝟎.𝟎𝟎 2 401.62
u2152 73 400 71 469 2.63 1 326.63 68 152 7.15 9 579.31 73 400 0.00 1 619.61 70 920 3.38 2 217.11
u2319 78 319 78 319 𝟎.𝟎𝟎 1 210.42 76 250 2.64 6 496.30 78 113 0.26 569.76 76 317 2.56 3 982.97
pr2392 84 094 79 704 5.22 1 496.23 78 364 6.81 8 624.02 84 094 0.00 422.73 80 697 4.04 5 311.21
pcb3038 104 667 100 660 3.83 4 491.30 97 596 6.76 18 000.00 104 667 0.00 917.39 102 194 2.36 9 188.42
fl3795 99 121 95 675 3.48 6 867.61 – NA 18 000.00 97 707 1.43 3 158.89 99 121 𝟎.𝟎𝟎 16 848.43
fnl4461 164 201 158 654 3.38 11 047.56 – NA 18 000.00 164 201 0.00 3 248.64 137 559 16.23 27 916.33
rl5915 199 336 189 096 5.14 15 139.79 – NA 18 000.00 199 336 0.00 5 593.23 193 173 3.09 63 131.86
rl5934 207 385 198 428 4.32 16 384.22 – NA 18 000.00 207 385 0.00 5 881.87 200 213 3.46 51 098.55
pla7397 320 744 303 425 5.40 18 000.00 – NA 18 000.00 320 744 0.00 18 000.00 310 795 3.10 163 213.50

Average 59 949 57 312 4.53 2 082.26 38 280 5.63 4 814.36 59 744 0.35 1 109.93 57 913 2.45 8 705.53
best – – 2 – – 0 – – 32 – – 7 –
Table 7
The best objective values generated by our ML-ACO algorithm and four state-of-the-arts
for solving the MWCP. The best results are highlighted in bold.

Graph |𝑉 | ML-ACO FastWClq LSCC WLMC TSM

p_hat1000-1 1000 1 514 1 514 1 514 1 514 1 514
p_hat1000-2 1000 5 777 5 777 5 777 5 777 5 777
p_hat1000-3 1000 8 111 8 058 8 111 8 076 8 111
p_hat1500-1 1500 1 619 1 619 1 619 1 619 1 619
p_hat1500-2 1500 7 360 7 327 7 360 7 360 7 360
p_hat1500-3 1500 10 321 10 057 10 321 9 846 10 119
DSJC1000.5 1000 2 186 2 186 2 186 2 186 2 186
san1000 1000 1 716 1 716 1 716 1 716 1 716
C1000.9 1000 9 191 8 685 9 254 7 317 7 341
C2000.5 2000 2 466 2 466 2 466 2 360 2 407
C2000.9 2000 10 888 9 943 10 964 7 738 8 228
C4000.5 4000 2 776 2 645 2 792 2 383 2 402
MANN_a45 1035 34 209 34 111 34 243 34 265 34 259
hamming10-2 1024 50 512 50 512 50 512 50 512 50 512
hamming10-4 1024 5 127 4 982 5 129 4 738 4 812

Average – 10 252 10 107 10 264 9 827 9 891

Here, the aim of our ML model is to predict the ‘probability’ of

vertex being part of the maximum weighted clique. To train our
14
ML model, we construct a training set using eighteen optimally-solved
small graphs (|𝑉 | < 1000) from the standard DIMACS library. The
original DIMACS graphs are unweighted, and thus we assign a weight
𝑤𝑖 = (𝑖 mod 200) + 1 to the vertex 𝑣𝑖 (𝑖 = 1,… , |𝑉 |), following the
previous works (Wang et al., 2016; Cai and Lin, 2016; Jiang et al.,
2017, 2018). Each training instance corresponds to a vertex in a train-
ing graph. We extract six features to characterize a vertex, including
graph density, vertex weight, vertex degree, an upper bound and two
statistical features described in Sun et al. (2021b). A training instance
is labeled as 1 if the corresponding vertex belongs to the maximum
weighted clique; otherwise it is labeled as −1. We then train a linear
SVM to classify whether a vertex belongs to the maximum weighted
clique or not.

We use fifteen larger graphs (|𝑉 | ≥ 1000) from the DIMACS library
as our test problem instances. For each problem instance, we use the
trained ML model to predict a probability value 𝑝𝑖 for each vertex
𝑣𝑖 ∈ 𝑉 . The predicted values (𝑝𝑖) are then incorporated into the MMAS
algorithm to guide its sampling towards larger-weighted cliques. More
specifically, we use 𝑝𝑖 to set the heuristic weight: 𝜂𝑖 = 𝑝𝑖 ⋅ 𝑤𝑖, for each
𝑣𝑖 ∈ 𝑉 . The parameter settings for MMAS and linear SVM are the same
as before. We compare our ML-ACO algorithm against two exact solvers

— TSM (Jiang et al., 2018) and WLMC (Jiang et al., 2017) as well as

Computers and Operations Research 143 (2022) 105769Y. Sun et al.
two heuristic methods LSCC (Wang et al., 2016) and FastWClq (Cai and
Lin, 2016) for solving the MWCP. The cutoff time for each algorithm is
set to 1000 s.

The best objective values obtained by each algorithm in 25 indepen-
dent runs are presented in Table 7. We can observe that our ML-ACO
algorithm is comparable to the state-of-the-art algorithms for solving
the MWCP. On average, the best objective values found by our ML-ACO
algorithm are significantly better than those found by FastWClq, WLMC
and TSM. The LSCC algorithm performs the best and generates slightly
better results than our ML-ACO algorithm. These results are interesting,
because generic solution methods such as our ML-ACO algorithm are
not often expected to be as competitive as specialized solvers.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D.,
Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015.
TensorFlow: Large-scale machine learning on heterogeneous systems. URL: https:
//www.tensorflow.org/ software available from tensorflow.org.

Abbasi, B., Babaei, T., Hosseinifard, Z., Smith-Miles, K., Dehghani, M., 2020. Predicting
solutions of large-scale optimization problems via machine learning: A case study
in blood supply chain management. Comput. Oper. Res. 119, 104941.

Angelelli, E., Archetti, C., Filippi, C., Vindigni, M., 2017. The probabilistic orienteering
problem. Comput. Oper. Res. 81, 269–281.

Archetti, C., Corberán, Á., Plana, I., Sanchis, J.M., Speranza, M.G., 2016. A branch-
and-cut algorithm for the orienteering arc routing problem. Comput. Oper. Res.
66, 95–104.

Assunção, L., Mateus, G.R., 2021. Coupling feasibility pump and large neighborhood
search to solve the steiner team orienteering problem. Comput. Oper. Res. 128,
105175.

Bengio, Y., Lodi, A., Prouvost, A., 2021. Machine learning for combinatorial op-
timization: a methodological tour d’horizon. European J. Oper. Res. 290 (2),
405–421.

Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer.
Blum, C., 2005. Ant colony optimization: Introduction and recent trends. Phys. Life

Rev. 2 (4), 353–373.
Blum, C., Djukanovic, M., Santini, A., Jiang, H., Li, C.-M., Manyà, F., Raidl, G.R.,

2021. Solving longest common subsequence problems via a transformation to the
maximum clique problem. Comput. Oper. Res. 125, 105089.

Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal
margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory. pp. 144–152.

Cai, S., Lin, J., 2016. Fast solving maximum weight clique problem in massive graphs.
In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence. In: IJCAI’16, AAAI Press, pp. 568–574.

Campos, V., Martí, R., Sánchez-Oro, J., Duarte, A., 2014. GRASP with path relinking
for the orienteering problem. J. Oper. Res. Soc. 65 (12), 1800–1813.

Chang, C.-C., Lin, C.-J., 2011. LIBSVM: A library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2, 27:1–27:27.

Chao, I.-M., Golden, B.L., Wasil, E.A., 1996. A fast and effective heuristic for the
orienteering problem. European J. Oper. Res. 88 (3), 475–489.

Chen, T., Li, M., Yao, X., 2018. On the effects of seeding strategies: a case for
search-based multi-objective service composition. In: Proceedings of the Genetic and
Evolutionary Computation Conference. In: GECCO ’18, Association for Computing
Machinery, pp. 1419–1426.

Cortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20 (3), 273–297.
Ding, J., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., Song, L., 2020. Accelerating

primal solution findings for mixed integer programs based on solution prediction.
In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, Vol.
34. pp. 1452–1459.

Dorigo, M., Blum, C., 2005. Ant colony optimization theory: A survey. Theor. Comput.
Sci. 344 (2-3), 243–278.

Dorigo, M., Gambardella, L.M., 1997. Ant colony system: a cooperative learning
approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1 (1),
53–66.

Dorigo, M., Maniezzo, V., Colorni, A., 1996. Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. B 26 (1), 29–41.

El-Hajj, R., Dang, D.-C., Moukrim, A., 2016. Solving the team orienteering problem
with cutting planes. Comput. Oper. Res. 74, 21–30.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J., 2008. LIBLINEAR: A
library for large linear classification. J. Mach. Learn. Res. 9 (Aug), 1871–1874.

Fischetti, M., Fraccaro, M., 2019. Machine learning meets mathematical optimization
to predict the optimal production of offshore wind parks. Comput. Oper. Res. 106,
289–297.
15
Fischetti, M., Gonzalez, J.J.S., Toth, P., 1998. Solving the orienteering problem through
branch-and-cut. INFORMS J. Comput. 10 (2), 133–148.

Friedrich, T., Wagner, M., 2015. Seeding the initial population of multi-objective
evolutionary algorithms: A computational study. Appl. Soft Comput. 33, 223–230.

Gambardella, L.M., Montemanni, R., Weyland, D., 2012. Coupling ant colony systems
with strong local searches. European J. Oper. Res. 220 (3), 831–843.

Golden, B.L., Levy, L., Vohra, R., 1987. The orienteering problem. Nav. Res. Logist. 34
(3), 307–318.

Gunawan, A., Lau, H.C., Vansteenwegen, P., 2016. Orienteering problem: A survey of
recent variants, solution approaches and applications. European J. Oper. Res. 255
(2), 315–332.

Hammami, F., Rekik, M., Coelho, L.C., 2020. A hybrid adaptive large neighborhood
search heuristic for the team orienteering problem. Comput. Oper. Res. 123,
105034.

Hopper, E., Turton, B.C.H., 2001. An empirical investigation of meta-heuristic and
heuristic algorithms for a 2D packing problem. European J. Oper. Res. 128 (1),
34–57.

Jia, Y.-H., Mei, Y., Zhang, M., 2021. A bilevel ant colony optimization algorithm
for capacitated electric vehicle routing problem. IEEE Trans. Cybern. 1–14. http:
//dx.doi.org/10.1109/TCYB.2021.3069942.

Jiang, H., Li, C.-M., Liu, Y., Manya, F., 2018. A two-stage MaxSAT reasoning approach
for the maximum weight clique problem. In: Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 32. pp. 1338–1346.

Jiang, H., Li, C.-M., Manya, F., 2017. An exact algorithm for the maximum weight
clique problem in large graphs. In: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 31. pp. 830–838.

Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M., Talbi, E.-
G., 2022. Machine learning at the service of meta-heuristics for solving
combinatorial optimization problems: A state-of-the-art. European J. Oper. Res. 296
(2), 393–422.

Ke, L., Archetti, C., Feng, Z., 2008. Ants can solve the team orienteering problem.
Comput. Ind. Eng. 54 (3), 648–665.

Kipf, T.N., Welling, M., 2017. Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations. pp. 1–14.

Kobeaga, G., Merino, M., Lozano, J.A., 2018. An efficient evolutionary algorithm for
the orienteering problem. Comput. Oper. Res. 90, 42–59.

Lauri, J., Dutta, S., 2019. Fine-grained search space classification for hard enumeration
variants of subset problems. In: Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence. pp. 2314–2321.

Letchford, A.N., Rossi, F., Smriglio, S., 2020. The stable set problem: Clique and nodal
inequalities revisited. Comput. Oper. Res. 123, 105024.

Li, Z., Chen, Q., Koltun, V., 2018b. Combinatorial optimization with graph convolu-
tional networks and guided tree search. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems. In: NIPS’18, Curran
Associates Inc., Red Hook, NY, USA, pp. 537–546.

Li, C.-M., Liu, Y., Jiang, H., Manyà, F., Li, Y., 2018a. A new upper bound for the
maximum weight clique problem. European J. Oper. Res. 270 (1), 66–77.

Liaw, C., 2000. A hybrid genetic algorithm for the open shop scheduling problem.
European J. Oper. Res. 124 (1), 28–42.

Lin, S., 1965. Computer solutions of the traveling salesman problem. Bell Syst. Tech.
J. 44 (10), 2245–2269.

Malladi, K.T., Mitrovic-Minic, S., Punnen, A.P., 2017. Clustered maximum weight clique
problem: Algorithms and empirical analysis. Comput. Oper. Res. 85, 113–128.

Mavrovouniotis, M., Müller, F.M., Yang, S., 2016. Ant colony optimization with local
search for dynamic traveling salesman problems. IEEE Trans. Cybern. 47 (7),
1743–1756.

Montemanni, R., Weyland, D., Gambardella, L., 2011. An enhanced ant colony system
for the team orienteering problem with time windows. In: 2011 International
Symposium on Computer Science and Society. IEEE, pp. 381–384.

Nair, V., Hinton, G.E., 2010. Rectified linear units improve restricted Boltzmann ma-
chines. In: Proceedings of the 27th International Conference on Machine Learning.
pp. 807–814.

Nogueira, B., Pinheiro, R.G., 2018. A CPU-GPU local search heuristic for the maximum
weight clique problem on massive graphs. Comput. Oper. Res. 90, 232–248.

Palma-Heredia, D., Verdaguer, M., Molinos-Senante, M., Poch, M., Cugueró-Escofet, M.,
2021. Optimised blending for anaerobic co-digestion using ant colony approach:
Besòs river basin case study. Renew. Energy 168, 141–150.

San Segundo, P., Furini, F., Artieda, J., 2019. A new branch-and-bound algorithm for
the maximum weighted clique problem. Comput. Oper. Res. 110, 18–33.

Santini, A., 2019. An adaptive large neighbourhood search algorithm for the
orienteering problem. Exp. Syst. Appl. 123, 154–167.

Santini, A., Viana, A., Klimentova, X., Pedroso, J.P., 2021. The probabilistic travelling
salesman problem with crowdsourcing. pp. 1–31, Preprint. URL: http://www.
optimization-online.org/DB_HTML/2021/08/8563.html.

Shen, Y., Sun, Y., Eberhard, A., Li, X., 2021. Learning primal heuristics for mixed integer
programs. In: 2021 International Joint Conference on Neural Networks (IJCNN). pp.
1–8. http://dx.doi.org/10.1109/IJCNN52387.2021.9533651.

Silberholz, J., Golden, B., 2010. The effective application of a new approach to the
generalized orienteering problem. J. Heuristics 16 (3), 393–415.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb2
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb2
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb2
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb2
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb2
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb3
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb3
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb3
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb4
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb4
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb4
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb4
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb4
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb5
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb5
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb5
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb5
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb5
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb6
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb6
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb6
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb6
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb6
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb7
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb8
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb8
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb8
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb9
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb9
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb9
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb9
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb9
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb11
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb11
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb11
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb11
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb11
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb12
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb12
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb12
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb13
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb13
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb13
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb14
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb14
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb14
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb15
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb15
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb15
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb15
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb15
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb15
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb15
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb16
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb18
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb18
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb18
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb19
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb19
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb19
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb19
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb19
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb20
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb20
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb20
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb21
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb21
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb21
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb22
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb22
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb22
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb23
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb23
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb23
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb23
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb23
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb24
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb24
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb24
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb25
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb25
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb25
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb26
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb26
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb26
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb27
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb27
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb27
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb28
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb28
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb28
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb28
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb28
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb29
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb29
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb29
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb29
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb29
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb30
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb30
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb30
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb30
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb30
http://dx.doi.org/10.1109/TCYB.2021.3069942
http://dx.doi.org/10.1109/TCYB.2021.3069942
http://dx.doi.org/10.1109/TCYB.2021.3069942
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb34
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb34
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb34
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb34
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb34
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb34
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb34
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb35
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb35
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb35
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb36
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb36
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb36
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb37
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb37
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb37
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb39
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb39
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb39
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb40
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb40
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb40
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb40
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb40
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb40
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb40
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb41
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb41
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb41
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb42
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb42
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb42
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb43
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb43
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb43
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb44
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb44
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb44
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb45
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb45
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb45
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb45
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb45
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb46
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb46
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb46
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb46
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb46
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb48
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb48
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb48
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb49
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb49
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb49
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb49
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb49
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb50
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb50
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb50
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb51
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb51
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb51
http://www.optimization-online.org/DB_HTML/2021/08/8563.html
http://www.optimization-online.org/DB_HTML/2021/08/8563.html
http://www.optimization-online.org/DB_HTML/2021/08/8563.html
http://dx.doi.org/10.1109/IJCNN52387.2021.9533651
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb54
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb54
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb54

Computers and Operations Research 143 (2022) 105769Y. Sun et al.
Stützle, T., Hoos, H.H., 2000. MAX–min ant system. Future Gener. Comput. Syst. 16
(8), 889–914.

Sun, Y., Ernst, A., Li, X., Weiner, J., 2021a. Generalization of machine learning for
problem reduction: a case study on travelling salesman problems. OR Spectr. 43
(3), 607–633.

Sun, Y., Li, X., Ernst, A., 2021b. Using statistical measures and machine learning for
graph reduction to solve maximum weight clique problems. IEEE Trans. Pattern
Anal. Mach. Intell. 43 (5), 1746–1760.

Vansteenwegen, P., Souffriau, W., Van Oudheusden, D., 2011. The orienteering
problem: A survey. European J. Oper. Res. 209 (1), 1–10.

Verbeeck, C., Sörensen, K., Aghezzaf, E.-H., Vansteenwegen, P., 2014. A fast solution
method for the time-dependent orienteering problem. European J. Oper. Res. 236
(2), 419–432.

Verbeeck, C., Vansteenwegen, P., Aghezzaf, E.-H., 2017. The time-dependent orienteer-
ing problem with time windows: a fast ant colony system. Ann. Oper. Res. 254
(1-2), 481–505.

Wang, Y., Cai, S., Chen, J., Yin, M., 2020. SCCWalk: An efficient local search algorithm
and its improvements for maximum weight clique problem. Artif. Intell. 280,
103230.
16
Wang, Y., Cai, S., Yin, M., 2016. Two efficient local search algorithms for maximum
weight clique problem. In: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 30. pp. 805–811.

Wang, S., Li, M., Zhang, Y., Bao, Z., Tedjopurnomo, D.A., Qin, X., 2018. Trip planning
by an integrated search paradigm. In: Proceedings of the 2018 International
Conference on Management of Data. In: SIGMOD ’18, Association for Computing
Machinery, New York, NY, USA, pp. 1673–1676.

Wu, Q., Hao, J.-K., 2015. A review on algorithms for maximum clique problems.
European J. Oper. Res. 242 (3), 693–709.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S., 2021. A comprehensive survey
on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32 (1), 4–24.

Xiang, X., Tian, Y., Zhang, X., Xiao, J., Jin, Y., 2021. A pairwise proximity learning-
based ant colony algorithm for dynamic vehicle routing problems. IEEE Trans.
Intell. Transp. Syst. 1–12.

Zhou, Y., Hao, J.-K., Goëffon, A., 2017. PUSH: A generalized operator for the maximum
vertex weight clique problem. European J. Oper. Res. 257 (1), 41–54.

Zlochin, M., Birattari, M., Meuleau, N., Dorigo, M., 2004. Model-based search for
combinatorial optimization: A critical survey. Ann. Oper. Res. 131 (1-4), 373–395.

http://refhub.elsevier.com/S0305-0548(22)00063-6/sb55
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb55
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb55
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb56
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb56
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb56
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb56
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb56
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb57
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb57
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb57
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb57
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb57
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb58
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb58
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb58
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb59
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb59
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb59
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb59
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb59
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb60
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb60
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb60
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb60
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb60
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb61
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb61
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb61
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb61
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb61
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb63
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb63
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb63
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb63
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb63
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb63
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb63
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb64
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb64
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb64
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb65
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb65
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb65
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb66
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb66
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb66
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb66
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb66
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb67
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb67
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb67
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb68
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb68
http://refhub.elsevier.com/S0305-0548(22)00063-6/sb68

	Boosting ant colony optimization via solution prediction and machine learning
	Introduction
	Background and related work
	Orienteering problem
	Ant colony optimization

	Boosting ant colony optimization via solution prediction
	Constructing training set
	Training and solution prediction
	Incorporating solution prediction into ACO

	Experiments
	Efficacy of integrating machine learning into ACO
	Sensitivity to machine learning algorithms
	Generalization to larger problem instances
	Generalization to benchmark problem instances
	Generalization to real-world problem instances
	Comparison with state-of-the-art algorithms

	Conclusion
	CRediT authorship contribution statement
	Acknowledgment
	Appendix A. Supplementary Methodology and Experimental Results
	A random sampling method for the orienteering problem
	An efficient method for computing the statistical measures
	A brief introduction of the machine learning algorithms used
	Parameter setting for AS and MMAS
	Experimental results for the large benchmark problem instances

	Appendix B. Adapting ML-ACO to Solve the Maximum Weighted Clique Problem
	References

