
A Resource-Aware Deep Cost Model for Big Data
Query Processing

Yan Li1, Liwei Wang1∗, Sheng Wang1, Yuan Sun3, Zhiyong Peng1,2∗
1School of Computer Science, Wuhan University 2Big Data Institute, Wuhan University

3School of Computing and Information Systems, The University of Melbourne
1{liyana, liwei.wang, swangcs, peng}@whu.edu.cn, 3yuan.sun@unimelb.edu.au

Abstract—The efficiency of query processing is highly affected
by execution plans and allocated resources in the Spark SQL
big data processing engine. However, the cost models for Spark
SQL are still based on hand-crafted rules. The learning-based
cost models have been proposed for relational databases, but it
does not consider the effect of the available resources. To address
this, we propose a resource-aware deep learning model that can
automatically predict the execution time of query plans based on
historical data. To train our model, we embed the query execution
plans based on the query plan tree and extract features from
the allocated resources. A deep learning model with adaptive
attention mechanisms is then trained to predict the execution
time of query plans. The experiments show that our deep cost
model can achieve higher accuracy in predicting the execution
time of query plans compared to traditional rule-based methods
and relational database learning-based optimizers.

I. INTRODUCTION

With the rapid development of the Internet, the volume of
data is growing explosively, especially in recent years with the
broader use of social networks [1], the Internet of Things [2],
and cloud computing [3]. Traditional data storage and analysis
technologies have become challenging to meet the needs of
users. Therefore, various big data processing systems [4]–[6]
have emerged to provide new options for current data queries.
Most of them support declarative Structured Query Language
(SQL) intending to represent queries more concisely. Compared
to relational databases (Oracle [7], MySQL [8], etc.), where
usage scenarios have largely solidified, the big data processing
systems are more flexible in their functionality.

Spark [4] is one of the popular computational engines for
large-scale data processing. Spark SQL [9] is the Spark module
for structured data processing, and it is a well-known open-
source SQL engine.1 However, Spark SQL still relies on rule-
based optimizers, and the research into cost models that can
improve the query performance of Spark SQL is relatively rare
[10]. The query optimizer of Spark SQL is a critical component
in making queries perform well, designed to generate the best
query execution plans. Optimized query execution plans can
significantly improve the query execution efficiency of systems.
For example, Fig. 1 illustrates the impact of cost models on
query performance in Spark SQL, where we compare the
performance of the default cost model and our optimized cost

1In the rest of the paper, we will focus on Spark SQL due to its popularity,
but our proposed model is general and can be applied to other big data
processing frameworks which support SQL.

 20

 24

 28

 32

 36

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
x
e
c
u

ti
o

n
 T

im
e
(s

e
c
) Default Optimization

Fig. 1. A performance comparison between the default and our optimized
cost models on twenty randomly selected SQL queries over the IMDB dataset
on Spark SQL.

model (described later) on twenty queries. We can see that
our tuned cost model can significantly reduce the execution
time of each query and greatly improve the query performance.
Therefore, it is essential to provide accurate cost models for
Spark SQL.

The study of cost models in relational databases [11] is
well-developed and usually designed based on the experience
and knowledge of experts. These methods frequently lead
to the generation of sub-optimal plans due to incorrect
cardinality and cost estimation [12]. It is because they rely on
inaccurate statistics and over-simplified assumptions. Recently,
the database community has begun to explore the use of
machine learning technologies to improve query performance
[13]–[17]. Most of them use learning-based models instead of
complex heuristically-driven models. For instance, TLSTM [17]
used a tree-structure based learning framework that combines
cardinality and costs to improve cost estimation. DRL [16]
drew on the experience of cost models to automatically explore
the space of possible query plans using deep reinforcement
learning.

However, the above cost models are not suitable for Spark
SQL. Firstly, in relational databases, it is always assumed that
the modified cardinalities will automatically correct the cost
estimate, and the cost model is not as crucial as the cardinality
estimate [12]. But for big data processing engines, the error
of the cost models is still large even with real-time cardinality
[18]. Besides, existing cost models consider queries to run
on a fixed set of resources. In contrast, Spark SQL runs in
a cloud computing environment where multiple applications
share resources. Users’ queries are running in a scenario
where resources are constantly changing and adding certain
resources will not necessarily improve the query performance.

*Corresponding authors

For example, we observe in our experiments that allocating
more resources to an executor may even increase the execution
time of a query (See Sec. III). Therefore, resource is an
important factor to consider when estimating the cost of a query
execution plan in big data systems. Although Baldacci and
Golfarelli [10] proposed the first cost model for Spark SQL, it is
still designed based on the knowledge and experience of experts
and requires significant human efforts to tune. Furthermore,
their hand-crafted rules are too limited to capture the complex
patterns of the effects of resources on the performance of
query plans. Hence, there is a need to design an automatic and
learnable cost model, in order to obtain a proper combination
of real-time resources and query execution plans. In contrast
to the traditional cost models, learnable cost models can easily
be updated regularly and adapted to different clusters.

To address the above issues, we first analyze the impact of
resource changes on query performance to show that resources
are an essential factor to the cost of a query execution plan.
After that, we propose a Resource-Aware Attentional LSTM
(RAAL) model to accurately predict the cost of query execution
plans to improve the query performance. We develop a novel
encoding method that can efficiently extract features of query
execution plans. Then, to better extract the semantics of the
execution statements, we use LSTM networks to model the
query execution plans. Finally, we apply an adaptive attention
mechanism that dynamically learns the relationships between
nodes in query execution plans and actively tracks the resources
available to run these execution plans.

In summary, our key contributions are as follows:

• We conduct a detailed analysis of the impact of resources
on the cost of execution plans in Spark SQL. Our
analysis shows that resources strongly influence the cost of
execution plans, and the optimal query execution plan for
a query varies with resources without an obvious pattern.
(See Sec. III)

• We propose a novel encoding method to represent the
embedding vector of query execution plans. We extract fea-
tures of execution plan trees using a structure embedding
consisting of the out-degree and in-degree information of
each node and a node-semantic embedding to represent
the operational semantics of each node. (See Sec. IV-C)

• We propose an LSTM-based cost model RAAL. RAAL
extracts the ordered connection between nodes in query
execution plans, and senses changes in the executing
resources in combination with an adaptive attention
mechanism. Our RAAL model is built on both the node
connection and resource features to predict the execution
time of query execution plans. (See Sec. IV-D)

• We conduct extensive experiments using different datasets
to verify the impact of resources on the cost of query
execution plans in clusters. The results show that our
proposed model outperforms the state-of-the-art models
in terms of prediction accuracy. (See Sec. V)

II. RELATED WORK

A. Spark and Spark SQL

Apache Spark [4] is the dominant big data framework, with
more efficient and faster computing power. In contrast to other
big data systems such as Hadoop and Storm, Spark provides a
comprehensive, unified framework for managing a wide range
of datasets and data sources with different properties.

Spark Running Mechanism. Resilient Distributed Dataset
(RDD) [19] is an abstraction of distributed memory that
provides a highly shared memory model. Spark organizes data
in RDDs to logically partition the data. When each application
is submitted to run in Spark, it requests a set of executor
resources to run the application independently. Spark’s resource
unit is the executor, a process on the worker node where the
application runs. Each application has its own set of executors.
Theoretically, the executor’s memory, the number of executor
cores, and the number of executors determine the resources
available to run the application.

Spark has two types of resource allocation mechanisms:
static and dynamic. The static resource allocation means that
the application, throughout its lifecycle, occupies the allocated
resources. This is in contrast to dynamic resource allocation,
under which the resources allocated to an application are
released back to the cluster when they become free. In either
resource allocation approach, the resource features captured
by our cost model are the initial resources allocated to the
application. If the resource changes during the query execution,
we will continue executing the chosen plan, because it may
cost more to terminate the current execution plan and switch
to another.

Spark SQL. The core component of Spark SQL is Catalyst,
responsible for converting declarative SQL queries into an
optimized query plan. Catalyst processes a SQL query by
compiling and parsing, generating a logical plan, optimizing
the logical plan, and generating the physical plan. A logical
plan usually develops one or more physical plans, from which
we need to choose the best one depending on cost models.
Catalyst has utilized statistical data and a simple cost model
since version 2.3.0, mainly by developing some calculation
rules to estimate the cost of each operator to determine the
join order [10]. After the physical plan is selected, Spark SQL
translates the query plan into a DAG graph for execution on
the Spark Common Engine.

B. Query Optimization

Traditional Cost Models. Traditional database cost models
[20], [21] calculate a weighted sum of CPU cost and I/O
cost. These factors are heavily dependent on database statistics
information. Additionally, the weighting of each element
requires human tuning. Most of the early studies focused on
efficient cost functions for database operations. Manegold et al.
[20] concerned about the cost of memory access to database
operators, developing a generic technique for creating exact
cost functions for database operations. Theodoridis et al. [21]

proposed to estimate the cost of join queries in spatial databases
based on an R-tree.

Learning-based Query Optimization for Relational
Databases. Traditional query optimizers rely on heuristic
rules and require much effort to tune databases. The database
community starts to build learning-based query optimizers
[22]. Several studies [23], [24] have attempted to estimate
the cardinality more precisely. Liu et al. [23] proposed to
use the neural network architecture to learn a function that
could estimate the cardinality of only containing relational
predicates. MSCN [24] was designed to capture the connected
cross-correlation of data using a multi-layer convolution neural
network. These studies argue that an accurate cardinality
estimation is more important than a precise cost model.

Deep learning techniques for query optimization can be
broadly divided into two categories: 1) generating query
execution plans [15], [16], [25], [26]; and 2) predicting the
cost of query execution plans to select the best one [17],
[27]–[29]. DQ [25] used reinforcement learning to optimize
the join queries, guiding the search space in a data-driven
manner to learn optimized join search strategies. Ortiz et al.
[26] discussed how to use state representation to improve
reinforcement learning-based query optimization. Neo [15]
employed a deep neural network to generate query execution
plans, which learns from existing optimizers to form a new
type of learning-based query optimizer. In contrast, the other
category of methods applied deep learning techniques to predict
the execution cost of queries. Akdere et al. [27] and Marcus
et al. [28] focused on deep learning-based query performance
prediction for relational databases. TLSTM [17] combined
cost and cardinality estimation to improve prediction accuracy,
which is currently the state-of-the-art method. However, all of
these efforts are improvements and refinements to relational
database query optimization problems.

Query Optimization for Big Data Processing. Due to the
complexity of Spark SQL running in multiple computing nodes,
developing accurate cost models for Spark SQL has become
more complex than that for relational databases. RIOS [30] is a
runtime integrated optimizer for Spark SQL. RIOS collected all
statistics related to a given query at runtime to determine the
optimized join order. It focused on the impact of cardinalities on
generating query plans. Baldacci and Golfarelli [10] designed
a cost estimation function for Spark SQL, which was the first
cost model for the Spark computing paradigm.

There are also studies [31], [32] that aim to match the
best resources for a given query execution plan. They tend to
run some sample data through the model to find the optimal
resource allocation. However, even if the optimal resources
required to run a query plan are known, the resources allocated
to the query plan in a cloud environment do not necessarily
match the optimal resources, thus increasing the blocking time
of the task. Iorgulescu et al. [33] applied memory elasticity
to cluster scheduling to reduce task wait time. CLEO [18]
was an initial exploration of learning-based cost models for
SCOPE [34], the big data processing system of Microsoft, and

TABLE I
RESOURCE CONFIGURATIONS

Resources Description

Node Number of nodes composing the cluster,
which is the number physical CPUs that
make up the cluster.

Core Number of cores on each node, where
a node can contain more than one core.

Executor The number of processes started on the
Worker Node for an Application. Each
node can have one or more executors.

E-Core Number of cores for each executor. That
is the number of concurrent threads that
can be used per executor.

E-Memory Maximum memory per Executor.

N-throughput Network throughput between nodes.

D-throughput Disk read/write throughput.

it integrated a large number of individual cost models (micro-
model). Viswanathan et al. [35] proposed to select both query
plan and resource allocation at the same time. Microlearner
[36] is a learning query optimizer based on the idea of micro-
models to estimate cardinality and cost, etc. In contrast, our
model is an end-to-end approach, aiming to predict the cost
of execution plans with different resources in Spark SQL.

III. THE IMPACT OF RESOURCES

Spark SQL runs in a cloud, where multiple users or
applications share the resources of a cluster. Resources affect
the execution time of queries and play a critical role in
query plan cost estimation. Intuitively, the amount of resources
available are negatively correlated with the query cost. However,
we observed that this is not always true in experiments. In the
following, we investigate the impact of resources on the cost
of query execution plans.

We conducted our experiments in a cloud environment, and
the cluster is configured as shown in Table III (see Section V-A).
Table I shows the resource configurations associated with Spark
SQL.2 We use a real-world dataset IMDB [12], which is the Join
Order Benchmark extension. It is a 7.2GB dataset including 22
tables from the Internet Movie Data Base (IMDB). The final
cost of each query execution plan is averaged over three runs
to alleviate randomness. As memory is usually the performance
bottleneck, we will examine the impact of resources on query
performance, using executor memory as an example.

Sort Merge Join (SMJ) and Broadcast Hash Join (BHJ)
are two typical implementations of joins in Spark SQL. To
investigate the impact of resources on different query operations,
we analyze the following four representative queries.

1) Single-table query, the query execution plan not involving
join operations:
SELECT COUNT(*) FROM movie_keyword

mk WHERE mk.keyword_id<71692;

2Here we only list representative resources, and our model can be extended
with other resources through our flexible embedding method in Sec. IV-C.

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 1 2 3 4 5 6 7
Ex

ec
ut

io
n

Ti
m

e
(m

s)

Executor Memory(GB)

Plan1 Plan2 Plan3

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 1 2 3 4 5 6 7

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Executor Memory(GB)

(a) Single-table query

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 1 2 3 4 5 6 7

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Executor Memory(GB)

(b) Two-table join query (SMJ)

 1200

 1600

 2000

 2400

 2800

 3200

 3600

 1 2 3 4 5 6 7

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Executor Memory(GB)

(c) Two-table join query (BHJ)

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 1 2 3 4 5 6 7

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Executor Memory(GB)

(d) Three-table join query (SMJ + BHJ)

Fig. 2. Cost of query execution plans with increasing memory sizes.

2) Two-table join query, the query execution plan involving
SMJ operations:
SELECT COUNT(*) FROM title t,

movie_companies mc
WHERE t.id = mc.movie_id
AND mc.company_id <213849
AND mc.company_type_id>1;

3) Two-table join query, the query execution plan involving
BHJ operations:
SELECT COUNT(*) FROM title t,

movie_info_idx mi_idx
WHERE t.id = mi_idx.movie_id
AND t.kind_id<7
AND t.production_year>1961
AND mi_idx.info_type_id<101;

4) Three-table join query, the query execution plan involving
SMJ and BHJ operations:
SELECT COUNT(*) FROM title t,

movie_companies mc,
movie_keyword mk
WHERE t.id = mc.movie_id
AND t.id = mk.movie_id
AND mc.company_id = 43268
AND mk.keyword_id < 2560;

In our experiments, we use the physical plans generated by
Catalyst, the query optimizer of Spark SQL. In Catalyst, the
optimized logical plan develops multiple physical execution
plans. We fetch each physical execution plan of each query and
evaluate them. For complex multi-table join queries, we select
the first three Catalyst-generated physical execution plans for
evaluation. Note that for the queries on one table, normally there
are only two physical execution plans. We investigated each of
the query plans for the above four queries. The execution plans
for the same query differ in operator type, operating conditions,
or plan tree structure. In the case of the single-table query, the
difference between its two physical plans is the variation in
the conditions in the File Scan operators.

We set the number of cores in each executor and the number
of executors as 2 and then vary the size of executor memory.
Fig. 2 presents the impact of executor memory on the cost of
different query plans. We can see that the memory of each
executor greatly affects the cost of query execution plans.

Even for a single-table query, the cost of its execution plans
varies with memory. In addition, changing the memory of each
executor will also sometimes change the optimal execution
plan of a query. Taking the two-table query (Fig. 2(c)) as
an example, when the executor memory is 4GB or 5GB, the
optimal query execution plan for this query is plan3, while
the rest is plan1.

Increasing the memory of each executor does not necessarily
reduce the cost of the execution plan because a cluster has
a finite amount of memory. By increasing the memory of
each executor, we will lessen the disk I/O, but it may also
increase the blocking time of tasks. Also, different operators
may apply to different memory sizes. For example, SMJ is
more advantageous than BHJ in a certain memory range [35].
Allocating the right resources to the query plan requires a
balanced configuration of the memory of each executor and the
number of executors. There is a complex non-linear relationship
between the memory and number of cores and executors and
the cost of execution plans. Even though several studies [31],
[32] try to match the optimal resources to query execution
plans, the optimal resources are not always satisfied in fact.
Therefore, we aim to develop an accurate cost model to predict
an optimal execution plan for a query with a limited resource
allocation. Our resource-aware model captures the real-time
resources allocated by the resource manager for the query and
selects the best execution plan for the query given the real-time
resources.

IV. RESOURCE-AWARE ATTENTIONAL LSTM MODEL

Relational databases usually rely on statistical information
to estimate the cost of query execution plans. Unlike relational
databases, the cost of query execution plans in Spark SQL also
depends on the available resources. We need to combine real-
time resources to estimate the cost of query plans. Therefore,
we propose a deep cost model to find the best combination
of resources and query execution plans, enabling the learning
model to generate optimal run-time plans.

A. Problem Definition

When Spark SQL runs a query, the query optimizer will
generate several query execution plans for the query and select
the best one. At the same time, the system allocates resources
to run the query. The cost model is an essential component of

Tables

Queries

Dataset

User Query

Spark SQL

Data Samples

Resource Parameters
[nodes, executors …]

Feature Encoding

vector

vector vector

vector vector

D
ee

p
C

os
t M

od
el

C
os

t P
re

di
ct

io
n

Real Cost

Real Resource
...

Executed Plans

Data Collection

Fig. 3. An overview of our end-to-end resource-aware query optimization framework. There are three main parts: data collection, data feature encoding, and
learning with a deep cost model.

the query optimizer used to evaluate the cost of query execution
plans. A query execution plan is a tree structure containing
multiple operation nodes, where the child nodes affect the
operation of the parent node.

We set Q = {q1, q2, q3, ..., q|Q|} to be a set of queries
submitted by users, where |Q| denotes the total number of
queries. P = {p1, p2, p3, ..., pi} includes all query execution
plans for each query, where pi = {v1, v2, v3, ..., vn} is the
representation of a query execution plan, and n is the total
number of nodes in the execution plan pi. vn represents an
operation node vector, and can be defined as vn = {En, Nn},
where En denotes the connections between node vn and other
nodes and Nn denotes the operational features of node vn.
Our aim is to predict the cost of a query execution plan
by developing a deep learning model based on the real-time
resources Re = {r1, r2, r3, ..., rj} and features extracted from
query plans.

B. Overview

The overview of our resource-aware query optimization
framework is shown in Fig. 3. It mainly consists of three
phases:

1) The data collection phase, which aims to obtain many
query execution plans with the actual cost and resource
consumption.

2) The data feature encoding phase, which aims to encode
the query execution plans and other features as embed-
ding vectors.

3) The learning phase, where the deep cost model is trained
based on the collected data.

Data Collection. This phase generates data needed for training
the deep cost model. When Spark SQL receives multiple queries
and the corresponding data for each query, we obtain all its
query execution plans, the actual cost and resource consumption
of each plan.

Feature Encoding. Feature encoding focuses on extracting key
factors that affects the cost and encoding it into feature vectors.
Query execution plans are bottom-up tree structures. The
feature encoding consists of two parts: one is the information
contained in each node, and the other is the relationships
between the nodes. Meanwhile, we obtain the real-time resource
consumption of each execution plan. The execution plan vectors
and the resource vectors are then used as inputs to the deep
cost model. In addition, we input statistical information like
cardinality into the cost model. An intuitive idea to represent

node information, such as operations and table names, is using
one-hot encoding [37]. However, the one-hot encoding does not
perform well to represent complex query conditions. Moreover,
it may produce sparse vector representations making it difficult
to extract useful features. Instead, we use word2vec [38] to
overcome these issues. (see Sec. IV-C)

Deep Cost Model. A deep cost model is built based
on the collected data. We propose an end-to-end resource-
aware attentional model for predicting the execution cost of
query plans. We convert node information and correlations
between nodes into an embedding matrix to learn the feature
representation of query execution plans. (see Sec. IV-D)

Cost Prediction. The trained deep cost model can be used to
predict the execution cost of query plans. Each query execution
plan is converted into a feature embedding and, with the other
features together, input to the deep cost model to predict its
cost.

C. Feature Encoding

In Spark SQL, both query execution plans and running re-
sources are important factors that affect the query performance.
The main challenge in modeling these factors is how to encode
different query execution plans. First, query execution plans
are bottom-up tree structures, and the input of parent nodes
depends heavily on the output of their child node. It requires to
capture the correlation between nodes to preserve the influence
of child nodes on their parents. Secondly, we need to extract
the information for each node and design a reasonable encoding
method to extract the features of different nodes. To address
these issues, we propose an embedding model consisting of a
node-semantic embedding and a plan-structure embedding.

Node-semantic Embedding. In query execution plans, each
node usually consists of execution statements containing
information such as operation type, query predicates, and
operation data. These nodes are stacked together in the order of
execution to form complete query execution plans. Operations
in Spark SQL are the physical operations, which include scan
operation (e.g., File Scan), join operation (e.g., Sort Merge
Join, Broadcast Hash Join, Broadcast Nested Loop Join), sort
operation (e.g., Sort by, Order by), aggregation operation (e.g.,
Aggregate, Hash Aggregate, Sort Aggregate), and partitioning
operation (e.g., Exchange Hash Partition, Exchange Single
Partition). Predicates are filter/join conditions, combinations
of operators, columns, and operating conditions. Fig. 4 shows
an example of the physical execution plan, where we can see

1 File Scan (title.id, title.kind_id)
2 Filter ((((is not null(tItle.kind_id) && is not
null(title.production_year)) && (title.kind_id < 3)) &&
(cast(title.production_year as int) = 2008)) && is not
null(title.id))

1 File Scan (movie_info.movie_id, movie_info.info_type_id)
2 Filter ((is not null(movie_info.info_type_id) &&
(movie_info.info_type_id > 2)) && is not
null(movie_info.movie_id)) v1 v4

1 Project (movie_info.movie_id)
2 Exchange Hash Partitioning (movie_info.movie_id)

1 Sort (movie_info.movie_id)

v2

v3

1 Project (title.id)
2 Exchange Hash Partitioning (title.id) v5

1 Sort (title.id) v6

1 Sort Merge Join (title.id, movie_info.movie_id) v7

1 Project () v8

1 HashAggregate (partial_count)
2 Exchange SinglePartition v9

1 HashAggregate (count) v10

SELECT COUNT(*)

 FROM title t,movie_info mi
 WHERE t.id=mi.movie_id
 AND t.kind_id<3
 AND t.production_year=2008
 AND mi.info_type_id>2;

v10
...

v7

v6
...

v3
v2
v1
E

0
...
0
0
...
0
1
0

v1

0
0
0
0
...
1
0
-1

v2

0
...
1
0
...
0
-1
0

v3

...

...

...

...

...

...
...
...
...

0
...
1
0
...
0
0
0

v6

0
...
0
-1
...
-1
0
0

v7

...

...

...

...

...

...

...

...

...

0
...
0
0
...
0
0
0

v10

v6 -2.5106065 … -3.2884467 -0.33791295 … -1.388865
... …

v3 -0.28672384 … 0.2906731 -2.7386183 … -2.8171074

v2 -0.29692364 … 0.1907771 -3.7080183 … -1.9191036

v1 -0.66335815 … -1.6928259 -0.7393876 … -0.5837182
N Node-semantic Embedding

-2.8579576 … 2.3706918 0.77356106 … 3.7601266
... …

v10 1.7877614 … -2.6910748 2.4927237 … 4.110628

v6

Fig. 4. A query execution plan encoding example. A©: a SQL query. B©: an execution plan for this query in Spark SQL. C©: encoding of this execution plan,
where E is the structural feature embedding and N is the node semantic embedding.

that node v1 contains two execution statements, including a
scan statement:
File Scan (movie_info.movie_id,
movie_info.info_type_id)
and a filter statement:
Filter ((is not null
(movie_info.info_type_id) &&
(movie_info.info_type_id>2)) &&
is not null (movie_info.movie_id)),
where >, &, is not null are operators; movie_id,
info_type_id are columns; movie_info is the table to
which the columns belong; and 2 is the operating condition.

We first apply explicit one-hot encoding to represent different
nodes. For example, each operation type can be encoded as
shown in Table II. We can represent other features such as
column and operator in the same way. One-hot encoding
is a more intuitive way, but it suffers from two problems.
One is that joining each feature encoding will produce high-
dimensional and sparse vector, which is not conducive to extract
effective information. The other is the difficulty of representing

the complex predicate operating conditions. If the operating
conditions are numeric, we can use a normalized floating-point
encoding. If it is a string value, we cannot use one-hot encoding
to represent it. Moreover, one-hot encoding is not conducive
to feature extraction between similar nodes.

Word2vec [38] is an embedding method that maps each word
in statements to a vector representing the relationship between
words. The operations of each node in the query execution plan
consist of different execution statements. Therefore, we can use
word2vec to extract the operational features of each execution
statement. Firstly, it is possible to represent complex predicate
conditions, no matter they are numbers or strings. Secondly,
it facilitates the capture of semantic information about each
operation statement and the correlation between similar nodes.

Word2vec maps words into a new space by embedding
them so that semantically similar words are close to each
other in that space. Based on the word embedding, we can
learn the relationship between words by computing their
embeddings’ Euclidean distance. We consider operators in

TABLE II
AN EXAMPLE OF ONE-HOT ENCODING

Operation type One-hot encoding

File scan 0000001
Project 0000010

Sort 0000100
Sort merge join 0001000
Hash aggregate 0010000

Exchange single partition 0100000
Exchange hash partition 1000000

execution statements as words whose vectors are similar in
spatial coordinates. Using the word2vec encoding to execute
statements, the distances of semantic embedding vectors of
similar nodes are similar. In contrast, the vectors generated
using the one-hot encoding are independent and thus the one-
hot encoding cannot learn the association relationships between
similar nodes.

Structure Feature Encoding. Query execution plans are
bottom-up execution structures where the output of all child
nodes affects the execution cost of their parents. Therefore,
we encode each operation node’s features and extract the
connection relationships between nodes. We treat each query
execution plan as a directed acyclic graph and sort the operation
nodes according to the execution order. We then extract the out-
degree and in-degree of each node to form an edge embedding
matrix that reflects the correlation between the nodes in the
query plan. As shown in Fig. 4, node v7 is the parent of v3
and v6 and the child of v8. Therefore, disposing of v3 and v6
as 1 and v8 as −1 is the structure vector of node v7.

We use the information about operation nodes and the inter-
node correlations to model each query execution plan, each of
which is composed of node-semantic embedding and structure
feature embedding. As shown in Fig. 4, we define the query
plan as p = [E,N], where E = {E1, E2, ..., En} is the edge
embedding matrix, representing the relationship between each
node, and N = {N1, N2, ..., Nn} is the node embedding
matrix, with each row representing the features of a node
operation, consisting of the embedding vectors of the operating
statements.

Resource Information Embedding. In theory, the system’s
resource manager allocates to a query the number of executors,
the number of the executor cores, and the executors’ memory
to reveal the resources available to run the query. To extract
these resource features rj easily and quickly, we normalize
each feature value into the range of [0,1]:

rj
∗ =

rj
max(rj)

(1)

where max(rj) represents the maximum value of the feature
rj . We set max(rj) to the maximum available rj of the system
(means the system performs a single query task and resources
are not shared).

Other Features. The external features such as cardinality and
unique values also significantly impact the cost of execution

plans. Similar to the resource information, we normalize each
feature value into the range of [0,1].

D. Deep Cost Model

For the query cost estimation, we use a Recurrent Neural
Network (RNN), called the Long Short Term Memory (LSTM)
network [39], to learn the overall representation of query
execution plans. Unlike traditional machine learning models,
LSTM has long-term memory capabilities, with a network
structure consisting of one or more forgettable and memorable
units. However, the results may be less satisfactory if using
the basic LSTM network structure here. Firstly, the LSTM
network does not handle the relationships between nodes very
well. Although we consider the structural features of execution
plans when encoding them, this does not highlight strongly
relevant nodes (e.g., the nearest neighbor node). In addition,
we should capture the impact of resources on each node and
give more attention to nodes that are sensitive the change of
resources. Therefore, we propose a Resource-Aware Attentional
LSTM model (RAAL for short) to address these issues and
the overall architecture is shown in Fig. 5.

We first embed query execution plan vectors (both node-
semantic embedding and structure feature embedding) into the
plan feature layer to learn the potential features of execution
plan trees. For the output vectors of the plan feature layer, we
input them to the node-aware attention layer and the resource-
aware attention layer, respectively, to improve the accuracy of
query execution cost prediction. The node-aware attention layer
captures the features between the current node and its strongly
associated nodes. The resource-aware attention layer captures
the impact of resources on the execution of each node. We
then use multiple dense layers to obtain a high-quality feature
representation and predict the cost of the execution plan.

Embedding Layer. Given a query execution plan containing
n nodes, the first step is to transform each node into a real
embedding vector ei. After feature extraction, we obtain the
node-semantic embedding N and structure feature vector E
for each query execution plan. Then, we join N and E as em-
bedding vectors of the query execution plan. In the embedding
layer shown in Fig. 5, the embedding emb = {e1, e2, ..., en}
is the input to the RAAL model. The embedding vector of a
query execution plan is large and sparse. We need to process
it to obtain a high-quality feature representation.

Plan Feature Layer. As LSTM networks can learn long-term
dependency information, we use it to model query execution
plans better to extract the semantics of each node’s operational
statements.

LSTM networks are composed of multiple memory cells. In
contrast to a normal RNN that uses only one temporal state h,
the LSTM has a cell state c for storing important information
in addition to the temporal state h. The LSTM basic block can
be added and forgotten to previous input information through
an internal gate structure. The plan feature layer of Fig. 5
shows the relationship between the basic cells inside an LSTM

e1

 E N

[v11 v12 … v1n v1]

……

……

…

… …

…

H*

Node-Aware Attention Layer

D
en

se
 L

ay
er

C
O

S
T

ct

it ft

ot
…

p1

… …

v1 vi vn

a1 ai an

…P

bib1

…M

v1 vi

bn

vn

H1

H2

Hi

Hn

…

Re Re Re

Plan Feature Layer

……

Resource-Aware Attention Layer

H3

…

ct

it ft

ot

ct

it ft

ot

ct

it ft

ot

ct

it ft

ot

…

e2

ei

e3

en

…

…

[v31 v32 … v3n v3]

[v21 v22 … v2n v2]

[vi1 vi2 … vin vi]

[vn1 vn2 … vnn vn]

H1 Hi Hn

H1 Hi Hn

pi pn

Embedding Layer

… …

… …

Fig. 5. The architecture of the proposed Resource-Aware Attentional LSTM model. Encoding the query execution plan first and an embedding emb =
{e1, e2, ..., en} that input to the model. Then, through the LSTM layer to learn the overall representation Hi of each plan node. Subsequently, through the
node-aware attention to learn the representation of relationships between nodes, and through the resource-aware attention to learn the impact of resources on
execution nodes. Finally, the predicted cost is output through multiple dense layers.

block. The update of the hidden state h and cell state c is
shown as follows:

it = σ(Whiht−1 +Wxixt + bi) (2)
ft = σ(Whfht−1 +Wxfxt + bf) (3)
c̃t = tanh(Whcht−1 +Wxcxt + bc) (4)
ct = ft · ct−1 + it · c̃t (5)
ot = σ(Whoht−1 +Wxoxt + bo) (6)
ht = ot · tanh(ct) (7)

where σ is the sigmoid activation function that outputs a value
between 0 and 1, describing how much of each part can pass,
tanh is the hyperbolic tangent function that outputs a value
between -1 and 1, W is the weight to be learned, and b is the
bias. Notations it, ft, ot represent input gate, forgetting gate,
and output gate, respectively, and each containing a sigmoid
neural network layer and a per-bit multiplication operation.
The input gate determines how much of the input data at
time t needs to be saved to the cell state. The forgetting
gate determines how much of the cell state at time t − 1
needs to be preserved to time t. The output gate controls how
much of the unit state needs to be output at time t. The cell
state ct incorporates information about the past cell state ct−1,
the candidate memory cell and new input data, and c̃t is the
candidate memory cell. The hidden vector ht is the final output
of the LSTM block.

Node-Aware Attention Layer. Query execution plans are
bottom-up execution tree structures, where the output of the
child nodes is the input to the parent node, so we need to
consider the impact of different child nodes on their parent
node. Let p = {v1, v2, v3, ..., vi, ..., vn} denote the set of nodes,
and n be the total number of nodes in the query execution plan
p. Let pi = {vi1, vi2, vi3, ..., vim} denote the set of child nodes
associated with node vi, and m is the total number of children
of node vi. The number of related children of each node is
different, and only a subset of pi has a strong influence with
node vi. Therefore, our node-aware attention mechanism uses
a non-fixed feature representation. The core idea here is to
compute the correlation scores of node vi and its children in pi.
It captures the structure feature of the query execution plan and
allows the model to learn the association relationship between
the nodes more accurately. Thus, the adaptive attention network
measures the relevance scores between node vi and each child
node in pi by:

ai =
exp(pivi)∑

vk∈p/pi exp(pivk)
(8)

where vi ∈ RK×1 and pi ∈ Rm×K .3 p/pi represents the set
of all nodes in p except the nodes in pi. ai ∈ Rm×1 is the
adaptive attention vector for node vi. The larger the value

3K is the dimension of the latent vector, and we set it as a constant 32 by
default in our experiments.

of ai, the higher the correlation between node vi and the
corresponding node in pi. It allows the trained network to
learn the connections between nodes better and gives each
node a more appropriate weight distribution.

As shown in the Node-Aware Attention layer in Fig. 5,
Hi = [h1, h2, ..., hn] is the hidden state of node vi, which is
produced by the LSTM network. Then we form the relationship
representation of node vi by a weighted sum of ai:

P =

n∑
i=1

Hiai (9)

where P ∈ Rm×n represents the relational feature between
each node vi and its own particular related child nodes.

Resource-Aware Attention Layer. As mentioned above, the
resource is an essential factor in the cost of query execution
plans. To allow each operation node to capture changes in
resources, we add a resource-aware attention layer and give
more attention to nodes sensitive to resource changes.

We let Re = {r1, r2, r3, ..., rj} denote the system’s real-
time resources. Intuitively, the resources affect various nodes
differently. As shown in Fig. 5, we propose a resource-aware
attention mechanism to capture the extent to which resources
affect different nodes. We capture the correlation of resources
with each node:

bi =
exp(Revi)∑n
1 exp(Revn)

(10)

M =

n∑
i=1

Hibi (11)

where Re ∈ Rj×1 is the representation vector of real-time
resources.4 A larger value of bi represents a stronger influence
of real-time resources on node vi. Notation M ∈ Rj×n is
a feature representation reflects the impact of the real-time
resource Re on the node vi.

Prediction Layer. We join P and M to obtain H∗, which
is used for subsequent execution cost prediction. We join H∗

and other statistical features together, and then map them to
a lower-dimensional vector representation by multiple dense
layers to predict the cost. In the RAAL model, we use the
mean squared error (MSE) as our loss function, which is the
most commonly used regression loss function.

V. EXPERIMENTS

The critical question we focus on in our experiments is
whether our proposed cost model RAAL considering the
resource information, can have higher query performance
in Spark SQL than the state-of-the-art models. To answer
this question, we test the performance of the RAAL and the
overall improvement in query performance with the addition
of resource status. We evaluate the proposed approach and
validate the performance of the system from the following
three aspects:

4To be consistent with the dimensionality of the node vi, we multiply
Re with T in our experiments. T is a K-dimensional random vector that is
automatically corrected during the training process.

TABLE III
CLUSTER CONFIGURATIONS

Configuration Details

Installation Tencent Cloud Ali Cloud On Premises
Node 4 5 1
Core 4 12 8
Main Memory 16GB 48GB 64GB
Disk 100GB 500GB 5TB

Version Hadoop 2.6.5 + Spark 2.4.7

1) evaluating the efficiency of RAAL model and compare
it with other methods;

2) assessing the impact of real-time resources on improving
the accuracy of the predicted cost;

3) evaluating the adaptability of RAAL and show that RAAL
can adapt to different workloads.

A. Setup

Datasets. We evaluate RAAL using two different benchmarks:
1) IMDB: a real-world dataset IMDB, which is an extension

of the join order benchmark test [12]. Estimating the
query cost of the IMDB dataset is much more complex
compared to the standard dataset TPC-H. The correlation
and skew distribution of the IMDB dataset are more
complex than that of TPC-H. We use 6000 queries with
0-5 joins that contain two types of query workloads [17].

2) TPC-H: the standard TPC-H benchmark [40], using a
scale factor of 100. We generated 5000 queries based on
the benchmark query templates.

These two datasets contain two types of query workloads. The
first workload type has only predicates with numeric attributes.
The second workload type contains complex predicates with
string attributes.

Training Data. We collect data from a cloud installation of
Spark and a local installation of Spark, respectively. Detailed
descriptions of configurations are in Table III. We implement
the RAAL on Spark SQL built in a local environment to com-
pare with the relational database cost model. To approximate
the variation of resources in a real scenario, we run all queries
in multiple resource states on the clouds. We run the IMDB
dataset on Tencent Cloud [41] and the TPC-H dataset on Ali
Cloud [42] to verify that RAAL can be adapted to different
clusters and data. Each training sample comprises a query
execution plan, the resource consumption, the related statistical
features, and the corresponding execution cost. Note that the
available resources are measured at the start of an execution
plan. All experiments were conducted by randomly placing
80% of the available queries in a training set and using the
remaining 20% of the available queries as a test set.

Evaluation Methods. We compare our RAAL with two most
related state-of-the-art studies, which we also discussed in
Sec. II-A:

1) GPSJ [10]: This is a cost model for Spark SQL that
covers the class of Generalised Projection, Selection,
Joining (GPSJ) queries. The cost model bases on cluster

and application parameters and a set of database statistics.
It is the state-of-the-art cost model for Spark SQL but
requires significant person-hours of engineering to tune
the parameters, so we used the hand-crafted models from
this paper directly.

2) TLSTM [17]: We implemented the TLSTM-based cost
model, which is the state-of-the-art approach to cost
estimation applicable to relational databases. For each
operator in a query plan, TLSTM uses an LSTM unit to
estimate the operator’s cost. The inputs to each LSTM
unit are the features of the operator and the intermediate
results of the sub-operators, and the outputs are the
predicted execution costs. These units are organized into
a tree structure to obtain the total cost of the query. Note
that TLSTM does not highlight the strong correlation
between different nodes. In addition, it is not directly
applicable to big data processing engines like Spark SQL.

Metrics. To evaluate the cost estimation performance of each
method, we used two metrics: relative error (RE) and mean
square error (MSE). Let P be the set of test query plans, es
be the estimated cost of p (p ∈ P), and ac be the actual cost
of p. The relative error (RE) is defined as follows:

RE =
1

|P |
∑
p∈P

|ac(p)− es(p)|
ac(p)

(12)

Relative errors sometimes tend to be underestimated. We
also measured the MSE, which penalizes overestimation and
underestimation symmetrically:

MSE =
1

|P |
∑
p∈P

[ac(p)− es(p)]2 (13)

The smaller the value of RE and MSE means the higher the
prediction accuracy of the method.

In addition, we measured statistical correlations (COR) and
coefficients of determination (R2) to evaluate the relationship
between the estimated cost and actual costs. Their values range
from 0 to 1, with the higher the value, the better the fit.

COR =

∑
p∈P [ac(p)− ac][es(p)− es]√∑

p∈P [ac(p)− ac]2
∑

p∈P [es(p)− es]2
(14)

R2 = 1−
∑

p∈P [ac(p)− es(p)]2∑
p∈P [ac(p)− ac]2

(15)

Training Environment. We use a machine with Intel CPU
i7-6700k v4, 48GB Memory, and GeForce RTX 2070 GPU
to train RAAL. We implement our models with PyTorch in a
Windows 10 64bit system.

B. Evaluation on Our Methods

This section contains three parts: 1) A validation of the
performance of the RAAL model, including an analysis of
each of its modules; 2) A comparison between RAAL and
the state-of-the-art cost model for relational databases; 3) A
comparison between RAAL with the state-of-the-art cost model
for Spark SQL.

(a) IMDB dataset (b) TPC-H dataset

Fig. 6. Cost errors on different datasets.

TABLE IV
EVALUATION OF OUR APPROACH.

Method IMDB TPC-H

RE MSE COR R2 RE MSE COR R2

NE-LSTM 0.134 1.157 0.965 0.933 0.183 3.791 0.968 0.946
NA-LSTM 0.120 0.776 0.980 0.956 0.196 4.165 0.976 0.927

RAAC 0.133 1.214 0.966 0.931 0.178 2.722 0.982 0.956
RAAL 0.102 0.553 0.986 0.969 0.172 1.997 0.985 0.977

1) Analysis of Our Model: Our proposed RAAL model
consists of three components: the plan embedding module, the
feature extraction module, and the aware attention module. We
have verified and analyzed the performance of each module,
and the results are presented in Table IV. Fig. 6 shows the
comparison between the different methods, with the vertical
coordinate being the loss value of models and the horizontal
coordinate being the number of training iterations. The results
show that the RAAL model can effectively extract features of
query plans and resources and improve the accuracy of cost
prediction.

Structure Embedding vs. Non-Structure Embedding. The
plan embedding module of the RAAL model consists of
two parts: node-semantic embedding and structure feature
embedding. Previous studies focus more on node feature
extraction while neglecting the structural features of query plans.
To verify the effectiveness of structure feature embedding, we
implemented the RAAL model without structure feature embed-
ding (named as NE-LSTM), and Fig. 6 shows the comparison
results. The method with structure feature embedding (RAAL)
outperforms the method without structure feature embedding
(NE-LSTM) because structure feature embedding explicitly
reveals lower-level nodes’ effect on upper-level nodes in query
execution plans.

Node-Aware Attention vs. None Node-Aware Atten-
tion. The method with node-aware attention (RAAL) out-
performs the method without node-aware attention (named
as NA-LSTM) because node-aware attention can capture
corresponding nodes and learn the relational features between
them. Fig. 6 shows the training process of the two models,
and we can observe that the loss of NA-LSTM fluctuates
dramatically, and thus the model is not stable. It suggests that
the NA-LSTM model does not learn the relationships between
strongly associated nodes well and thus does not stably capture
the structural features of the query execution plan. More details

TABLE V
COMPARISON WITH THE COST MODEL OF RELATIONAL DATABASES.

Dataset Method RE MSE COR R2

IMDB TLSTM 0.148 5.983 0.969 0.936
RAAL 0.074 1.856 0.993 0.985

TPC-H TLSTM 0.314 6.767 0.839 0.825
RAAL 0.262 1.672 0.862 0.843

for the impact of resource-aware attention will be discussed in
Sec. V-C.

LSTM vs. CNN. The difference between RAAL and RAAC
(replacing the LSTM with a CNN) is the extraction of the
query plan embedding features. RAAL uses an LSTM network
to learn the query execution plan features, while RAAC uses
a convolution neural network (CNN). The CNN considers
elements to be independent of each other during learning, and
inputs and outputs are also independent, which is not conducive
to learning the semantics of the executed statements of the
nodes. In addition, the LSTM has an additional memory cell
to avoid the omission of complex information.

2) Comparison with Relational Database Cost Models:
Existing cost models are mainly applicable to relational
databases and do not consider how they might be better suited to
Spark SQL. Unlike relational databases, the resources of Spark
SQL share across multiple tasks. To compare with relational
database cost models, we installed Spark SQL locally and
fixed the resources available for each query. It is similar to
the application scenario of a relational database running in a
specified resource environment. Fixed resource vector input to
the RAAL’s resource-aware attention layer at this point and
the resource parameters are the same for each training data.

We compare RAAL with the state-of-the-art relational
database cost model TLSTM and Table V shows the results.
RAAL has a lower MSE and RE than TLSTM and a
higher COR and R2 than TLSTM. The reason is that RAAL
uses a plan structure embedding and a node-aware attention
mechanism to more easily capture the structural features of
multi-layer query plans. While TLSTM uses a tree structure to
model the influence of lower-level nodes on higher-level nodes
in a query plan, which can also learn the structural features
of query plans, it may leave out the information about the
underlying nodes. In addition, the RAAL model gives more
attention to the nodes that have a more significant impact on
the execution cost.

3) Comparison with the cost model GPSJ for Spark SQL:
GPSJ is a cost model for Spark SQL that covers the generalized
projection, selection and join query classes. GPSJ is the first
to take the Spark computational paradigm into account and
is the state-of-the-art cost model for Spark SQL. We show
the results of the comparison between RAAL and GPSJ in
Table VI. GPSJ is a cost model developed based on cluster
and application parameters and a set of database statistics,
and it is not a learning-based approach. GPSJ has significant
errors in estimating the cost of query plans according to our
experiments. The reasons are two-fold: 1) over-reliance on
statistical information; 2) artificially constructed cost functions

TABLE VI
COMPARISON WITH THE GPSJ COST MODEL IN SPARK SQL.

Dataset Method RE COR

IMDB GPSJ 0.203 0.984
RAAL 0.102 0.986

TPC-H GPSJ 0.242 0.965
RAAL 0.172 0.977

have difficulty learning complex non-linear mappings.

C. Evaluation on the Impact of Resources

In this section, we evaluate the impact of resources on
the accuracy of cost models. We installed Spark SQL in
Tencent Cloud and Ali Cloud respectively, and recorded the
actual performance of all possible plans for each query against
different resource states. We ran IMDB on Tencent Cloud and
obtained 63, 000 data records, and ran TPC-H on Ali Cloud
and obtained 50, 000 data records.

To highlight the significant impact of resources on the
predictive performance of cost models, we implemented
the NE-LSTM, NA-LSTM, RAAC, and RAAL without the
resource-aware attention layer, respectively. Table VII shows
the comparison results, where the data on the left in each
column are the results without resource-aware attention, and
the bolded font on the right is the results with resource-aware
attention. We can see that adding the resource-aware attention
mechanism improves the performance of each method. For
TPC-H, the MSE of each model with resources considered
is much lower than that of each model without considering
resources. It indicates that resource features have a significant
impact on big data queries.

To provide a more intuitive description of the effectiveness
of the resource-aware attention mechanism, we plot the actual
and estimated costs of each query execution plan. Fig. 7 shows
the distribution of estimated costs for the RAAL model, one
without the resource-aware mechanism and the other with
resource-aware attention. We can see that the green dots are
significantly more divergent than the blue dots, indicating that
the model with the resource-aware attention layer performs
better. Note that the figures (7(c) and 7(d)) for the TPC-H
dataset are more sparse than those for the IMDB dateset. The
reasons for this are: (1) TPC-H has fewer queries than IMDB;
and (2) the cost distribution for TPC-H has a larger variance.

D. Evaluation on Adaptability

Different running environments can significantly affect query
performance. We tested the adaptability of RAAL when the
running environment changes. As the memory is often a
performance bottleneck, we verified the effectiveness of RAAL
in clusters with different executor memory sizes. Fig. 8 shows
the results of the IMDB dataset.

We have the following observations: the performance of the
RAAL model remains stable under different cloud environ-
ments. As can be seen from Fig. 8, the values of both COR
and R2 remain above 0.9, which tends to be flat. It indicates
a strong correlation between the estimated cost of the RAAL

TABLE VII
EVALUATING THE EFFECTIVENESS OF RESOURCES

Method IMDB TPC-H

RE MSE COR R2 RE MSE COR R2

NE-LSTM 0.252 0.134 1.434 1.157 0.964 0.965 0.918 0.933 0.233 0.183 16.602 3.791 0.959 0.968 0.685 0.946
NA-LSTM 0.215 0.120 1.756 0.776 0.968 0.980 0.908 0.956 0.225 0.196 16.661 4.165 0.960 0.976 0.693 0.927

RAAC 0.155 0.133 2.367 1.214 0.964 0.966 0.881 0.931 0.215 0.178 13.929 2.722 0.972 0.982 0.815 0.956
RAAL 0.155 0.102 0.785 0.553 0.980 0.986 0.956 0.969 0.217 0.172 13.228 1.997 0.957 0.985 0.817 0.977

(a) without attention layer (IMDB) (b) with attention layer (IMDB)

10
0

80
60

40
20

0

40200 60 80 100

(c) without attention layer (TPC-H)

10
0

80
60

40
20

0

40200 60 80 100

(d) with attention layer (TPC-H)

Fig. 7. Distribution of estimated cost by RAAL

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

RE MSE COR R2

V
a

lu
e

1GB 2GB 3GB 4GB 5GB 6GB 7GB

Fig. 8. Adaptability on the increasing memory size, where we increase the
memory size from 1GB to 7GB to observe the changes of four metrics,
respectively.

model and the Spark SQL real execution time. In addition, RE
stays around 0.1 and MSE stabilises below 1. Thus the RAAL
model can adapt to different memory sizes, and its performance
remains stable under different cloud environments.

E. Evaluation on Efficiency

We show the training time and test errors for different data
sizes in Table VIII. We can see that it takes less than two hours
to train our model with 50K training examples. Even if we
need to update our cost model with many new data records, it
will not take much time to retrain our model. The test error
decreases as the amount of training data increases, proving
that the more historical data is provided, the more accurate
the knowledge learned by the model. However, even with less
historical data, the testing error of our model is still reasonably
small.

We also evaluated the online estimation time of the RAAL
model, and Table IX shows the results. We can see that

TABLE VIII
TIME AND ERRORS WITH VARIOUS TRAINING SIZES

Dataset Metric Training Size (k)

10K 20K 30K 40K 50K

IMDB MSE 2.726 2.542 1.978 1.141 0.746
Time (min.) 55 59 62 87 99

TPC-H MSE 4.637 3.458 2.853 2.244 1.997
Time (min.) 49 56 65 84 97

TABLE IX
TIME(MS) ON VARIOUS ESTIMATION SIZES

Dataset Estimated Size

50 100 150 200 300

IMDB 2.215 2.386 2.652 2.783 2.915

TPC-H 2.636 3.177 3.489 3.638 4.194

Average 2.423 2.782 3.071 3.207 3.555

our method predicts the execution time of 100 queries in
only 2.782ms. TLSTM, which uses batch techniques to
improve computational efficiency, takes 3.342ms to estimate
the execution time of 100 queries. GPSJ computes the cost
of a query plan with a charge of up to 50ms. We can see
that the performance of the learning-based methods is much
higher than that of the statistical-based methods. Based on the
above observations, we can conclude that the estimation time
of RAAL is negligible.

VI. CONCLUSIONS

We investigated a resource-aware deep cost model for query
processing on Spark SQL in this paper. We first conducted
a detailed analysis of the impact of resources on the cost of
execution plans. Then, we proposed an LSTM-based cost model
RAAL with an attention mechanism to predict the cost for
each query plan and further selected the fastest one to execute.
Experiments on different datasets verified that our proposed
model beats state-of-the-art models in Spark SQL in terms of
both efficiency and accuracy.

In the future, we will focus on the dataset’s effect on the
selection of the optimal query plans and algorithms [43], [44].
Rather than using two datasets in this paper, the main objective
is for the cold-start query optimization when we need to conduct
queries on a newly loaded dataset without training new models.

ACKNOWLEDGMENTS

This work was partially supported by the National
Key Research and Development Project of China (No.
2018YFB1003400), the National Natural Science Foundation
of China (No. U1811263).

REFERENCES

[1] “Twitter,” https://twitter.com/, 2021.
[2] A. Dagnino, Data Analytics in the Era of the Industrial Internet of

Things. Springer, 2021.
[3] Q. Wang, F. Zhou, J. Xu, and Z. Xu, “Efficient verifiable databases with

additional insertion and deletion operations in cloud computing,” Future
Gener. Comput. Syst., vol. 115, pp. 553–567, 2021.

[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica et al.,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[5] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, vol. 36, no. 4, 2015.

[6] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@
twitter,” in SIGMOD, 2014, pp. 147–156.

[7] “Oracle — Integrated Cloud Applications and Platform Services,” https:
//www.oracle.com/index.html, 2021.

[8] “MySQL,” https://www.mysql.com/, 2021.
[9] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,

T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql: Relational data
processing in spark,” in SIGMOD, 2015, pp. 1383–1394.

[10] L. Baldacci and M. Golfarelli, “A cost model for SPARK SQL,” IEEE
Trans. Knowl. Data Eng., vol. 31, no. 5, pp. 819–832, 2019.

[11] J. Kossmann, T. Papenbrock, and F. Naumann, “Data dependencies for
query optimization: a survey,” Proc. VLDB Endow, pp. 1–22, 2021.

[12] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and
T. Neumann, “How good are query optimizers, really?” Proc. VLDB
Endow., vol. 9, no. 3, pp. 204–215, 2015.

[13] L. Ma, B. Ding, S. Das, and A. Swaminathan, “Active learning for ML
enhanced database systems,” in SIGMOD, 2020, pp. 175–191.

[14] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska,
“Bao: Making learned query optimization practical,” in SIGMOD, 2021,
pp. 1275–1288.

[15] R. C. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,
O. Papaemmanouil, and N. Tatbul, “Neo: A learned query optimizer,”
Proc. VLDB Endow., vol. 12, no. 11, pp. 1705–1718, 2019.

[16] R. Marcus and O. Papaemmanouil, “Towards a hands-free query optimizer
through deep learning,” in CIDR, 2019.

[17] J. Sun and G. Li, “An end-to-end learning-based cost estimator,” Proc.
VLDB Endow., vol. 13, no. 3, pp. 307–319, 2019.

[18] T. Siddiqui, A. Jindal, S. Qiao, H. Patel, and W. Le, “Cost models for
big data query processing: Learning, retrofitting, and our findings,” in
SIGMOD, 2020, pp. 99–113.

[19] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in NSDI,
2012, pp. 15–28.

[20] S. Manegold, P. A. Boncz, and M. L. Kersten, “Generic database cost
models for hierarchical memory systems,” in VLDB, 2002, pp. 191–202.

[21] Y. Theodoridis, E. Stefanakis, and T. K. Sellis, “Cost models for join
queries in spatial databases,” in ICDE, 1998, pp. 476–483.

[22] H. Lan, Z. Bao, and Y. Peng, “A survey on advancing the DBMS query
optimizer: Cardinality estimation, cost model, and plan enumeration,”
Data Sci. Eng., vol. 6, no. 1, pp. 86–101, 2021.

[23] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte, “Cardinality
estimation using neural networks,” in CASCON, 2015, pp. 53–59.

[24] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper,
“Learned cardinalities: Estimating correlated joins with deep learning,”
in CIDR, 2019.

[25] S. Krishnan, Z. Yang, K. Goldberg, J. M. Hellerstein, and I. Stoica,
“Learning to optimize join queries with deep reinforcement learning,”
CoRR, vol. abs/1808.03196, 2018.

[26] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi, “Learning state
representations for query optimization with deep reinforcement learning,”
in SIGMOD, 2018, pp. 1–4.

[27] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and S. B. Zdonik,
“Learning-based query performance modeling and prediction,” in ICDE,
2012, pp. 390–401.

[28] R. C. Marcus and O. Papaemmanouil, “Plan-structured deep neural
network models for query performance prediction,” Proc. VLDB Endow.,
vol. 12, no. 11, pp. 1733–1746, 2019.

[29] X. Zhou, J. Sun, G. Li, and J. Feng, “Query performance prediction
for concurrent queries using graph embedding,” Proc. VLDB Endow.,
vol. 13, no. 9, pp. 1416–1428, 2020.

[30] Y. Li, M. Li, L. Ding, and M. Interlandi, “RIOS: runtime integrated
optimizer for spark,” in SoCC, 2018, pp. 275–287.

[31] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud configura-
tions for big data analytics,” in NSDI, 2017, pp. 469–482.

[32] K. Rajan, D. Kakadia, C. Curino, and S. Krishnan, “Perforator: eloquent
performance models for resource optimization,” in ACM, 2016, pp. 415–
427.

[33] C. Iorgulescu, F. Dinu, A. Raza, W. U. Hassan, and W. Zwaenepoel,
“Don’t cry over spilled records: Memory elasticity of data-parallel
applications and its application to cluster scheduling,” in 2017 USENIX
ATC, 2017, pp. 97–109.

[34] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou, “Scope: easy and efficient parallel processing of massive
data sets,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1265–1276, 2008.

[35] L. Viswanathan, A. Jindal, and K. Karanasos, “Query and resource
optimization: Bridging the gap,” in ICDE, 2018, pp. 1384–1387.

[36] A. Jindal, S. Qiao, R. Sen, and H. Patel, “Microlearner: A fine-grained
learning optimizer for big data workloads at microsoft,” in ICDE, 2021,
pp. 2423–2434.

[37] C. Gao, X. He, D. Gan, X. Chen, F. Feng, Y. Li, T.-S. Chua, and D. Jin,
“Neural multi-task recommendation from multi-behavior data,” in ICDE,
2019, pp. 1554–1557.

[38] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in NIPS, 2013, pp. 3111–3119.

[39] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[40] M. Pöss and C. Floyd, “New TPC benchmarks for decision support and
web commerce,” SIGMOD Rec., vol. 29, no. 4, pp. 64–71, 2000.

[41] “Tencent Cloud,” https://cloud.tencent.com/, 2021.
[42] “Ali Cloud,” https://cn.aliyun.com/, 2021.
[43] S. Wang, Y. Sun, and Z. Bao, “On the efficiency of k-means clustering:

Evaluation, optimization, and algorithm selection,” Proc. VLDB Endow.,
vol. 14, no. 2, pp. 163–175, 2020.

[44] M. A. Muñoz, Y. Sun, M. Kirley, and S. K. Halgamuge, “Algorithm
selection for black-box continuous optimization problems: A survey on
methods and challenges,” Information Sciences, vol. 317, pp. 224–245,
2015.

https://twitter.com/
https://www.oracle.com/index.html
https://www.oracle.com/index.html
https://www.mysql.com/
https://cloud.tencent.com/
https://cn.aliyun.com/

	Introduction
	Related Work
	Spark and Spark SQL
	Query Optimization

	The Impact of Resources
	Resource-aware Attentional LSTM Model
	Problem Definition
	Overview
	Feature Encoding
	Deep Cost Model

	Experiments
	Setup
	Evaluation on Our Methods
	Analysis of Our Model
	Comparison with Relational Database Cost Models
	Comparison with the cost model GPSJ for Spark SQL

	Evaluation on the Impact of Resources
	Evaluation on Adaptability
	Evaluation on Efficiency

	Conclusions
	References

